

Meeting Energy Efficiency Standards

Balu Balakrishnan

President and CEO

Power Integrations

International Conference on Standby Power

New Delhi, India April 3, 2008

The Leader in High Voltage AC-DC Power Conversion ICs

- Revolutionary products
 - TOPSwitch®, TinySwitch®, LinkSwitch®
- Pioneer in energy efficiency (EcoSmart®)
 - \$2.7 billion saved in energy waste to date
- Products address 70% of all AC-DC power supplies
- Shipping > 650 million ICs per year

Cost-Effective Integration

36-watt discrete adapter: 75 discrete components

Cost-Effective Integration

36-watt adapter with a PI chip: 25 components

Power Integrations - India

Established in 1995

- 600+ customers
- 2 distributors (Spectra Innovations, SM Electronics & Components)
 - 1 more to be added in 2008

Applications design lab in Bangalore

Conducted EMI test capability

Localized design support

- Customized designs for India mains
- Design seminars

Reducing Standby Power – Two Components

- Each area can contribute to significant energy savings
- Many products need attention to both areas for maximum savings
 - Power supply to improve standby efficiency
 - Power management to reduce consumption in standby

Importance of Power Supply Standby Efficiency

Power supply standby efficiency	Total input power	Loss in Power supply	Power used by the product
33%	1.5 W	1.0 W	0.5W
67%	0.75 W	0.25 W	0.5W
		DC 123	

Doubling Standby Efficiency Saves: 0.75 W

Slide#7

A Good Example of Power Management

- Inexpensive phone (free with contract)
- Transmits and receives constantly
- Consumes only 20 mW in standby (180 hours)
- Consumes 1.15 W during calls (3 hours)
- On:Standby consumption ratio is 60:1

Demonstrates what can be achieved through cost- effective power management

Switchers Offer High Efficiency

Switchers offer much higher efficiency at cost-parity with linears

EcoSmart Cost Effectively Improves Stand-by and Active Mode Efficiency

Two Control Methods Cover All Power Ranges

Power Range	Architecture	Control Method
0 - 30 W	Single supply	<u>Digital ON/OFF</u> control
20 – 200 W	Single supply	Multi-Mode PWM control
>150 W	Dual supply	Digital ON/OFF control (for 0 - 50 W standby supply)

Digital ON/OFF Control

Digital ON/OFF Control

- Each ON cycle delivers full power
 - Cycles are disabled (OFF cycles) as needed to maintain regulation
- Provides virtually constant efficiency over entire load range
 - Effective switching frequency proportional to load
- Much simpler than PWM control
- Meets 300mW no-load without bias winding

Less Than 30mW No-load With Bias Winding

- Three parts reduce no-load consumption from ~300 mW to 30 mW
 - Energy saving is 27 cents per year
 - Component cost is 1 cent about 5 cents at retail
 - Payback period only 2.2 months

32 W (85 W Peak) Printer Power Supply

Greater than 70% efficiency at 1 W input

Constant Efficiency Over a Wide Power Range

- Average frequency automatically adjusted for line/load condition
 - Constant efficiency operation over entire line and load range

Multi-Mode PWM Control

Optimizing Operating Mode vs. Load

Multi-Mode PWM Control Example

46 W LCD Monitor Supply

Standby Power Supply (Digital ON/OFF Control)

20 W PC Standby Supply

67% efficiency at 1 W input

Usable Output Power

PC Standby Supply

Industry Begins Driving Energy Efficiency Specs

Proposed Energy Efficiency Index for Mobile Phones

- Driven by major OEMs
- Suppliers commit by 2008 with updates every 3 years

Self certification

- Uses ENERGY STAR test method
- Star rating to be shown on product or user guide
- Tighter than current standards

Scoring	No-load power consumption
****	≤ 0.03 W
***	> 0.03 W to 0.1 W
***	> 0.1 W to 0.2 W
**	> 0.2 W to 0.3 W
*	> 0.3 W to 0.5 W
No stars	> 0.5 W

Conclusions

- Increasing trend towards mandatory standards
 - Energy efficiency: quick & painless way to slow down global warming
- Some OEMs demanding even tighter requirements
 - Proactively exploiting available technology
- Two components to reducing standby consumption
 - Power supply efficiency in standby
 - Product power management
- Power supply standby efficiency is essentially free
 - Design objective, not necessarily a cost issue

www.powerint.com

