

# Demand Response Potential Assessment in Finnish Large-Scale Industry

Hannu Pihala

Technical Research Centre of Finland (VTT)

Demand Response Workshop, 19.4.2005, Crowne Plaza Hotel, Helsinki



## Contents

- Electricity use in Finnish industry
- Survey of industrial customers in order to estimate Demand Response (DR) potential
- DR technical potential in Finland
- Factors affecting DR potential
- Examples of customers applying DR
- Possibilities to use standby aggregates to produce peak demand
- Conclusions



## Electricity use in Finnish industry



## Survey of Demand Response potential in industry (1/2)

- The objective was to get an overall view of the large-scale industry Demand Response potential available to the market
- To find out the most important factors affecting the potential
- The survey was financed by Fingrid Oyj and Ministry of Trade and Industry
- The survey was carried out by VTT in the beginning of 2005
- The Confederation of Finnish Industries EK was representing industry in steering and monitoring the project
- The company specific information from the survey is confidential



## Survey of Demand Response potential in industry (2/2)

- Main focus on pulp and paper, basic metal and basic chemical industry (10 companies, 31 business locations)
- Also some cases from mineral (glass and cement) and food (meat and dairy) industry (4 companies, 22 business locations)
- These sectors use 33 TWh of electricity (73 % of total industry use)
- Surveyed companies use 16 TWh electricity (extended to cover whole pulp and paper industry)
- Mainly in-person interviews by visiting company locations, some by telephone and by mail
- Some part of the loads under survey belong already to the disturbance reserve of Fingrid (TSO)



# Energy and demand data of the industry in the survey

|                    | Business  | Electric demand       | Electric energy | Peak duration |
|--------------------|-----------|-----------------------|-----------------|---------------|
|                    | locations | (one hour peak value) |                 |               |
|                    | Number    | MW                    | TWh/a           | h/a           |
| All sectors        | 955       | 4 600                 | 33              | 7 200         |
| together yr. 2002  |           |                       |                 |               |
|                    |           |                       |                 |               |
| Surveyed companie  | es        |                       |                 |               |
| 1. Pulp, paper and | 16        | 1150                  | 8,5             | 7400          |
| board industry     |           |                       |                 |               |
| 2. Metal industry  | 5         | 656                   | 4,5             | 6 820         |
| 3. Chemical        | 10        | 329                   | 2,5             | 7 450         |
| industry (basic    |           |                       |                 |               |
| chemicals)         |           |                       |                 |               |
| 4. Mineral         | 7         | 43                    | 0,3             | 6 500         |
| industry           |           |                       |                 |               |
| (glass, cement)    |           |                       |                 |               |
| 5. Food industry   | 15        | 35                    | 0,2             | 5 600         |
| (meat, dairy)      |           |                       |                 |               |
| Total              | 53        | 2 213                 | 16              | 7 200         |



## Technical potential of DR in pulp and paper industry

#### Flexible loads: Groundwood plants and mechanical pulping plants

Values have been extended to cover whole pulp and paper industry (23,5 TWh)

|                                                     | year 2004 | year 2010 |
|-----------------------------------------------------|-----------|-----------|
| Total power demand of whole pulp and paper industry | 3 200 MW  |           |
| Total power demand of all flexible loads            | 790 MW    | 790 MW    |
| - reserved for disturbance reserve (Fingrid)        | 327 MW**  | 650 MW**  |
| - available for electricity markets                 | 463 MW    | 140 MW    |
| Peak load duration of flexible loads h/a            | 5 800 h   | 5 800 h   |

#### Response power that can be offered for the electricity market [yr2004&(yr2010)]

First and last column (0 h, total) are cumulative, rows are non-cumulative

| I libt alla last | This and last column (on, total) are campiant, o, to we are non-campiant, c |                                   |     |      |              |  |
|------------------|-----------------------------------------------------------------------------|-----------------------------------|-----|------|--------------|--|
|                  |                                                                             | notice time/ preparatory interval |     |      |              |  |
| Response         | 0 h                                                                         | 2 h                               | 8 h | 24 h | total        |  |
| duration         |                                                                             |                                   |     |      |              |  |
| 1 h              | 463(140)* MW                                                                |                                   |     |      | 463(140)* MW |  |
| 1 – 3 h          | 463(140)* MW                                                                |                                   |     |      | 463(140)* MW |  |
| 3 – 6 h          |                                                                             |                                   |     |      |              |  |
| 6 – 12 h         |                                                                             |                                   |     |      |              |  |
| > 12 h           |                                                                             |                                   |     |      |              |  |

<sup>\*</sup> in brackets demand response power available after the new nuclear power unit comes on-line

DR potential 790 MW



<sup>\*\*</sup> these values are based on 7000 h availability

## Technical potential of DR in basic metal industry

#### Flexible loads: Electrolysis, arc furnaces, rolling mill

Values cover only companies in the survey (4,5 TWh)

|                                                    | year 2004 | year 2010 |
|----------------------------------------------------|-----------|-----------|
| Total power demand of metal industry in the survey | 660 MW    |           |
| Total power demand of flexible loads               | 379 MW    | 380 MW    |
| - reserved for disturbance reserve (Fingrid)       | 75 MW     | 150 MW    |
| - maximum power available for electricity markets  | 243 MW    | 167 MW    |
| - non-flexible part of loads in processes          | 61 MW     | 63 MW     |
| Peak load duration of flexible loads h/a           | 7500 h    | 7500 h    |

DR potential 320 MW

#### Response power that can be offered for the electricity market [yr2004&(yr2010)]

First and last column (0 h, total) are cumulative, rows are non-cumulative

|          | ( , , , , , , ,                   | ,           |       |       |              |  |
|----------|-----------------------------------|-------------|-------|-------|--------------|--|
|          | notice time/ preparatory interval |             |       |       |              |  |
| Response | 0 h                               | 2 h         | 8 h   | 24 h  | total        |  |
| duration |                                   |             |       |       |              |  |
| 1 h      | 101(45)* MW                       | 114(94)* MW |       | 28 MW | 243(167)* MW |  |
| 1 – 3 h  | 101(45)* MW                       | 30 MW       |       | 31 MW | 162(106)* MW |  |
| 3 – 6 h  | 101(45)* MW                       |             | 30 MW |       | 131(75)* MW  |  |
| 6 – 12 h | 101(45)* MW                       |             |       | 30 MW | 131(75)* MW  |  |
| > 12 h   | 101(45)* MW                       |             |       | 30 MW | 131(75)* MW  |  |

<sup>\*</sup> in brackets demand response power available after the new nuclear power unit comes on-line



## Technical potential of DR in basic chemical industry

#### Flexible loads: Electrolysis, grinding plants, extruders, gas compressors

Values cover only companies in the survey (2,5 TWh)

|                                                       | year 2004 | year 2010 |
|-------------------------------------------------------|-----------|-----------|
| Total power demand of chemical industry in the survey | 330 MW    |           |
| Total power demand of all flexible loads              | 230 MW    | 240 MW    |
| - reserved for disturbance reserve (Fingrid)          |           |           |
| - maximum power available for electricity markets     | 101 MW    | 101 MW    |
| - non-flexible part of loads in the processes         | 129 MW    | 139 MW    |
| Peak load duration of flexible loads h/a              | 4000 h    | 4000 h    |

DR potential 100 MW

#### Response power that can be offered for the electricity market [yr2004&(yr2010)]

First and last column (0 h, total) are cumulative, rows are non-cumulative

| I fist and fast ( | That and last column (on, total) are camalative, lows are non-camalative |                                   |     |       |        |  |
|-------------------|--------------------------------------------------------------------------|-----------------------------------|-----|-------|--------|--|
|                   |                                                                          | notice time/ preparatory interval |     |       |        |  |
| Response          | 0 h                                                                      | 2 h                               | 8 h | 24 h  | total  |  |
| duration          |                                                                          |                                   |     |       |        |  |
| 1 h               | 56 MW                                                                    | 35 MW                             |     | 10 MW | 101 MW |  |
| 1 – 3 h           | 56 MW                                                                    | 35 MW                             |     | 10 MW | 101 MW |  |
| 3 – 6 h           | 48 MW                                                                    | 35 MW                             |     |       | 83 MW  |  |
| 6 – 12 h          |                                                                          |                                   |     | 30 MW | 30 MW  |  |
| > 12 h            | 5 MW                                                                     |                                   |     | 30 MW | 35 MW  |  |



# Technical potential of DR in large-scale industry (1/2)

Flexible loads: Grounwood plants and mechanical pulping plants, electrolysis, arc furnaces, rolling mill, grinding plants, extruders, gas compressors

|                                                    | year 2004 | year 2010 |
|----------------------------------------------------|-----------|-----------|
| Total power demand of the industry in survey       | 4 180 MW  |           |
| Total power demand of all flexible loads           | 1 400 MW  | 1 400 MW  |
| - reserved for disturbance reserve (Fingrid)       | 402 MW**  | 800 MW**  |
| - maximum power available for electricity markets  | 814 MW    | 410 MW    |
| - non-flexible part of loads in flexible processes | 184 MW    | 190 MW    |
| Peak load duration of flexible loads h/a           | 6000 h    | 6000 h    |

DR total potential 1 210 MW

Response power that can be offered for the electricity market [yr2004&(yr2010)]

First and last column (0 h. total) are cumulative, rows are non-cumulative

|          | notice time/ preparatory interval |              |       |       |              |  |
|----------|-----------------------------------|--------------|-------|-------|--------------|--|
| Response | 0 h                               | 2 h          | 8 h   | 24 h  | total        |  |
| duration |                                   |              |       |       |              |  |
| 1 h      | 625(241)* MW                      | 149(129)* MW |       | 38 MW | 812(408)* MW |  |
| 1 – 3 h  | 625(241)* MW                      | 65 MW        |       | 41 MW | 731(347)* MW |  |
| 3 – 6 h  | 155(99)* MW                       | 35 MW        | 30 MW |       | 220(164)* MW |  |
| 6 – 12 h | 107(50)* MW                       |              |       | 30 MW | 137(80)* MW  |  |
| > 12 h   | 106(50)* MW                       |              |       | 35 MW | 141(85)* MW  |  |

<sup>\*</sup> in brackets demand response power available after the new nuclear power unit comes on-line



<sup>\*\*</sup> these values are based on 7000 h availability

## Technical potential of DR in large-scale industry (2/2)

 Technical potential of DR (1 210 MW) is about 8.6 % from the peak power of Finland (14 000 MW)





## Effect of electricity price on activating Demand Response

| Effect of electricity price on activating power response |              |              |  |  |  |  |  |
|----------------------------------------------------------|--------------|--------------|--|--|--|--|--|
| Price limit that activates the Response duration         |              |              |  |  |  |  |  |
| response                                                 | max 3 h      | over 12 h    |  |  |  |  |  |
| 100 EUR/MWh                                              |              | 5 MW         |  |  |  |  |  |
| 200 EUR/MWh                                              | 148(128)* MW | 182(126)* MW |  |  |  |  |  |
| 300 EUR/MWh                                              | 646(300)* MW | 186(130)* MW |  |  |  |  |  |
| 500 EUR/MWh                                              | 650(300)* MW | 186(130)* MW |  |  |  |  |  |
| 1000 EUR/MWh                                             | 740(300)* MW | 266(190)* MW |  |  |  |  |  |

<sup>\*</sup> in brackets demand response power available after the new nuclear power unit comes on-line

- Price limits and demand response are very sensitive to market fluctuations (product prices)
- Electricity costs vary from 6 % to 80 % of production costs



## How companies prepare to high electricity prices

- All use price hedging when they purchase electricity (typically 95...98 % from electricity purchase)
- Some have set fixed price limits, in the case of high spot-prices they purchase less
- Own electricity production, ownership in power production companies
- Processes have been developed in order to get more electricity from the process itself (e.g. new nitric acid manufacturing plants)



## Barriers to participate on DR (1/2)

### Production process based

- To stop and to restart a process equipment (DR action) can increase production costs and lead to faults in equipment
- Equipment restarting after DR action is not always certain, in the case of failure a whole production line can come to a standstill
- During winter time there is a risk of freezing because of cold weather and decrease of heat produced from the production equipment
- Production processes are integrated (e.g. DR action in a production process can also stop district heating production or fuel production to a power plant)
- There is no or too little intermediate storage in production lines in order to carry out DR actions
- Unbundling of processes and electricity management



## Barriers to participate on DR (2/2)

## Human or organisational based

- Difficult to motivate persons responsible for production to participate on DR (DR actions can result to equipment faults)
- Things like DR actions that happen seldom are not very comfortable
- If DR action means reduction in production, usually fixed cost remain (labour etc.), persons in production should be able to do something else like maintenance work
- Decisions concerning production timing and the amount of production can be done far away from the production site e.g. abroad
- Hedging of almost all electricity purchase
- Disappearing of incentives related to the the old whole sale tariff structure due to competition



# Example of DR in a chemical company







## Standby aggregates in the survey

| Type of standby aggregates              | Size kVA   |          |            |  |  |
|-----------------------------------------|------------|----------|------------|--|--|
|                                         | < 500      | 5001000  | > 1000     |  |  |
| Manual, running isolated                | 1          |          |            |  |  |
| Manual, running parallel to the grid    |            |          |            |  |  |
| Automatic, running isolated             | 6          |          |            |  |  |
| Automatic, running parallel to the grid | 1          | 8        | 17         |  |  |
| Total number and (power MW)             | 8 (2,5 MW) | 8 (6 MW) | 17 (20 MW) |  |  |

- Use in the case of power failure to halt the processes in a controlled way
- Lowest price limit to use aggregates to produce peak demand is 200...250 EUR/MWh
- Automatic operation, parallel to the grid



## Conclusions

- Total DR potential in Finnish large-scale industry 1 210 MW (8.5 % from the Finnish power demand peak)
- DR for disturbance reserve: 400 MW (year 2009: 800 MW)
- DR available for electricity market: 810 MW (year 2009: 410 MW)
- DR potential in pulp and paper industry 790 MW (65 %), in basic metal industry 320 MW (27 %) and in basic chemical industry 100 MW (8 %)
- Very small DR potential in mineral and food industry compared to pulp and paper, metal and chemical industry
- 300 EUR/MWh electricity price activates 650 MW DR
- Many barriers to participate on DR: integrated processes, too little storages, risk of equipment faults, opposition of production personnel, new market conditions

