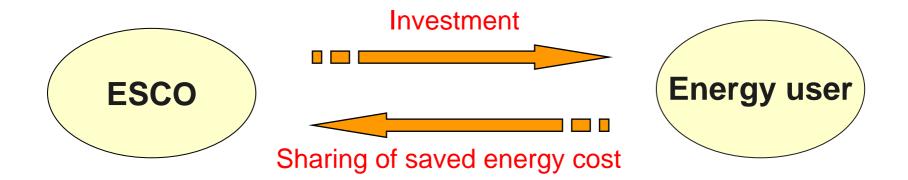
ESCO and Thermal Energy Storage for DSM in Korea

April, 2007

EnE System, Inc.

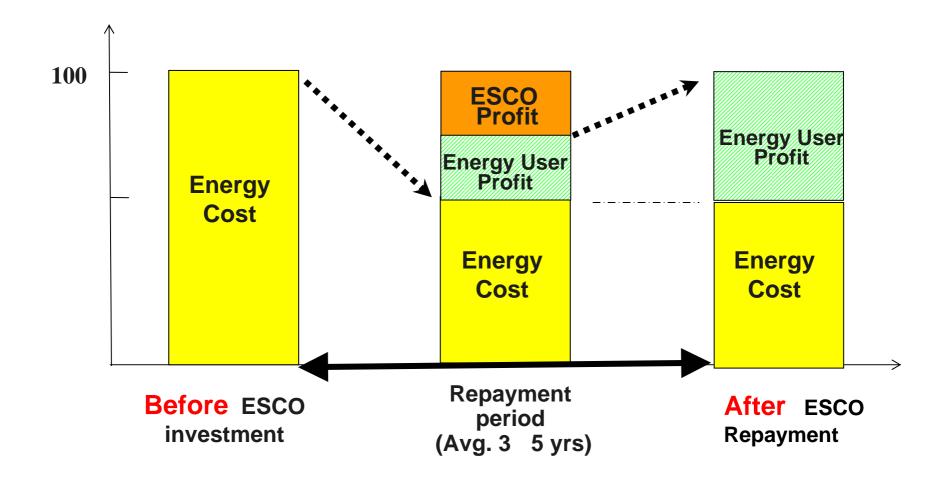

Korean Association for Energy Service Companies

- ESCO business were formed based on "Rational Energy Utilization Act" in 1991
- Korean government provides low interest loans for ESCO and tax credits for energy users since 1993

Energy Service Company (ESCO)

ESCOs are investing their engineering skills and fund to install energy-saving facilities for energy users, and then earn their profit from the saved energy cost of energy users

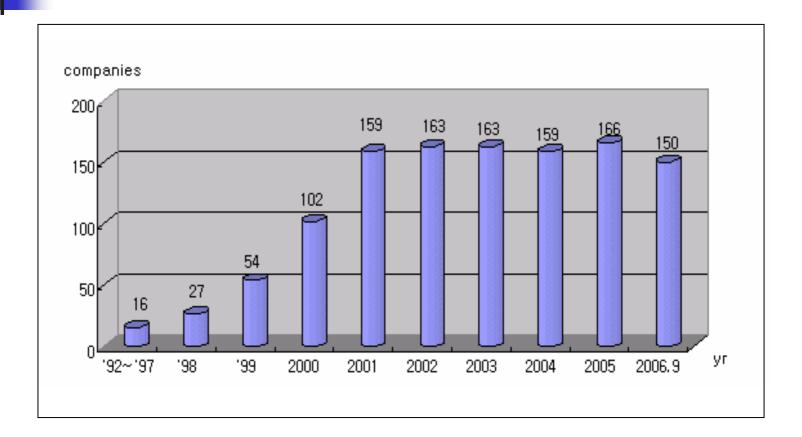
Advantage of ESCO business

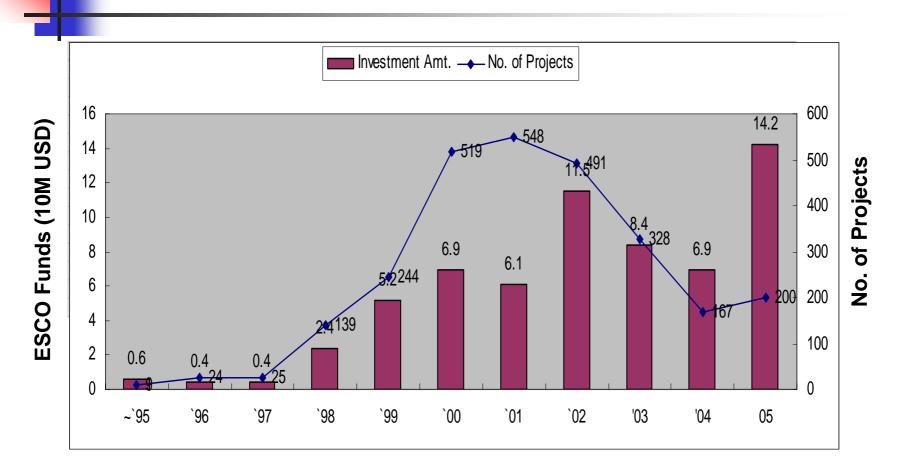

Energy User Perspective

- Energy cost reduction without financial burden
- Elimination of financial and technical risk
- Professional engineering service from ESCO

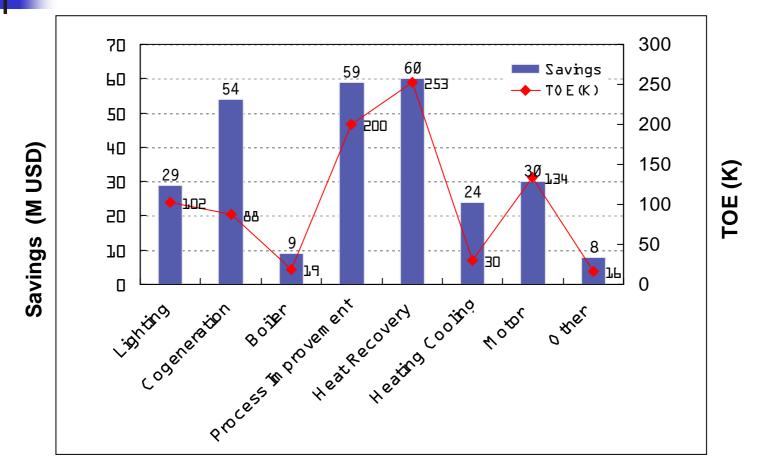
Nation-wide Perspective

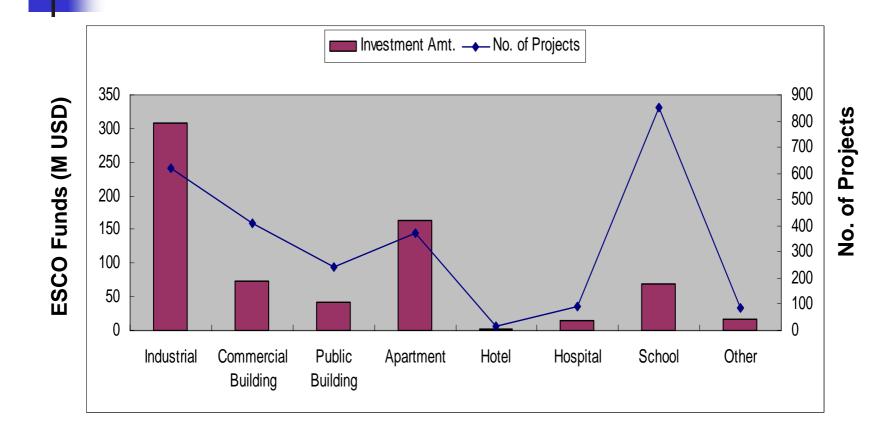
- Promotion of investment in energy-saving
- Growth of energy-saving industry


ESCO investment and profit sharing



Fund raising


Registration of ESCO's

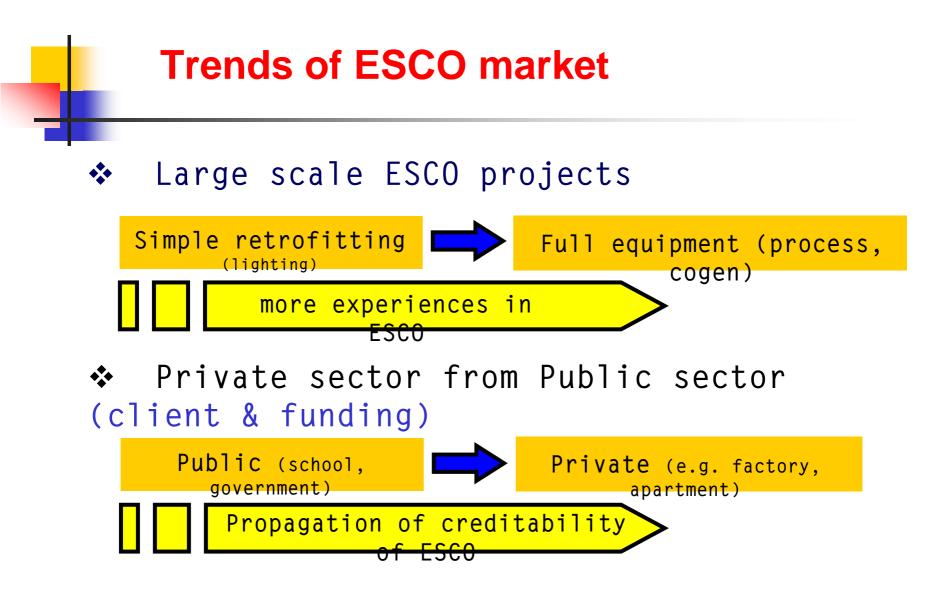

ESCO Investment by Year

Saved Energy after ESCO

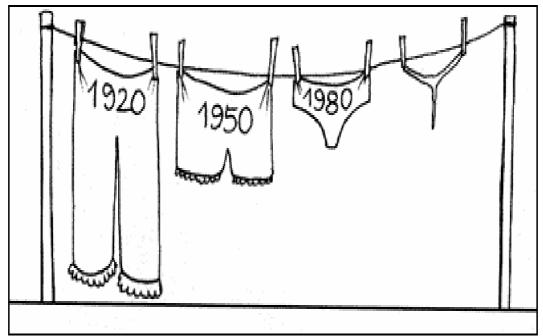
ESCO Investment by Business Sector

Energy Saving Technologies in Industry

Waste Heat Recovery System


- Heat Recovery Boiler,
- MVR, TVR
- Heat exchanger for Heating, cooling
- Co-Generation (electricity and steam)
- > Process Improvement
 - Naphta Cracking Heater Coil Replacement
 - N₂ Recovery System in PTA Unloading Process
 - R/C Flow Improvement in EPS Process
 - Air compressor

Energy Saving Technologies in Building


- Ice thermal storage system
- High efficient lighting system
- Co-generation system
- Heat recovery system (AHU, Steam)
- Chiller (absorption chiller unit)
- Inverter
- Building automation controls
- Electric power factor improvement

Others

Thanks a lot for your interests in Energy Saving!

The proof of Global Warming

KAESCO

Korean Association for Energy Service Companies

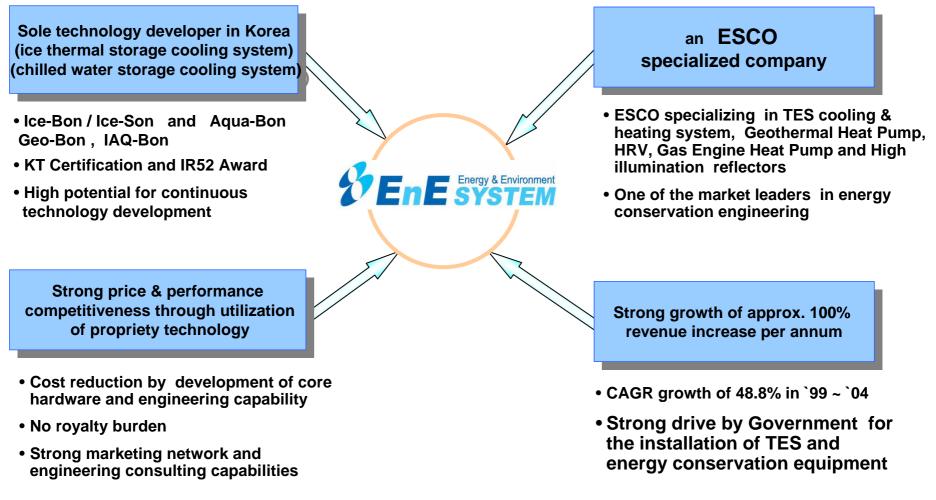
DSM with Thermal Energy Storage

Jein Yoo / CEO

EnE System, Inc.

Brief on EnE System

- I. Policy of Electricity Load Management in Korea
- II. Why we needs TES ?
- III. What is in TES ?
- **IV. Experiences of EnE System**

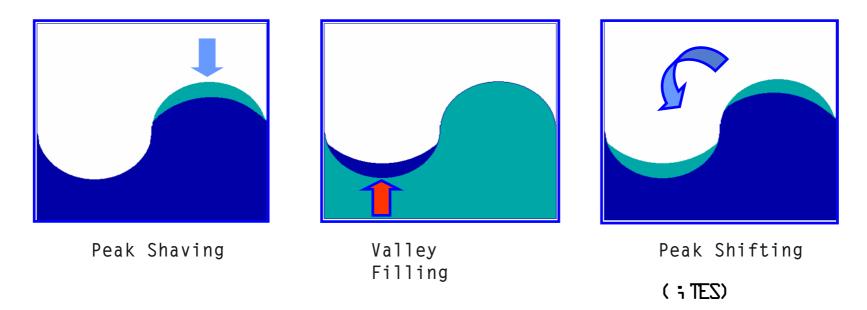

Company History & General Information

Largest Market Share Holder in Thermal Energy Storage

		History	General Information
	2005.12	New & Renewable E. Company	General mormation
	2005. 8	Capital Increased to 2.3 MM	
	2004. 4	First foreign proj award in Singapore	
Jump for the Global Leader	2003. 7	M&A of AFT for gas and environment business	establishment June 1997
	2003. 3	EnE SEA (Singapore) established	Energy system such as
	2002. 7.	KOSDAQ listing (July 30, 2002)	Business area TES, Heat pump, HRV, GHP
	2002. 5.	Good Products Award	
		(Government Procurement Service)	Paid-in cap. US\$ 2.3 MM (as of 2006)
		ISO9001 : 2000 / KS A 9001 : 2001	
	2002. 2.	KT certification : thermal storage	
Development &	2004 44	Energy coving company Award	Sales/net profit US\$ 42.0 MM / US\$ 1.7 MM
Commercialization	2001.11	 Energy saving company Award (MOCI&E) 	
	2001.3.	ESCO license	# of employees 53 (49 engineers)
	2000. 8.	Venture company certification	
		Promising venture (KEPCO)	website www.enesystem.co.kr
		Establishment of R&D institute	website www.enesystem.co.kr
The first venture			
spun off		IR-52 Award (MOST)	
from KITECH	1997.6.	Establishment	

Company Overview

A specialized TES company with proprietary technology for ESCO



• ESCO(Energy Service Company) ?

The government funds the substitution of out-dated energy facilities to high energy efficient ones with the help of qualified companies such as EnE System. Those companies receives the funds for what they contributed to the energy savings in a project.

I. Demand Side Management (DSM)

- difference in electricity demand between day and night due to cooling load
- peak demand for cooling purpose during short duration in summer time

Thermal Energy Storage (TES) :

or Two birds with a stone

DSM Policy in Korea

- Mandatory installation of TES <u>by law</u> for central cooling facilities since 1991
- Free incentives for <u>Chilled Water TES</u> and <u>Ice</u>
 <u>TES</u>
- Low electricity tariff for off-peak during night time (22:00~08:00), *i.e.* only ¼ compared to that of day time
- Tax reduction for the invested cost of TES

II. Why TES?

Optimum tool for energy conservation & environment protection

Environment aspects

- * Large scale equipment enjoys higher efficiency
- * All machines are operating at designed optimum capacity w/ high efficiency
- \rightarrow Less emission of CO₂ due to consuming less gas or oil

Power Company aspects

* Load factor of existing power plant can increase ; more sales with existing plant * Reduction of new plant construction to supply peak demand ; save investment

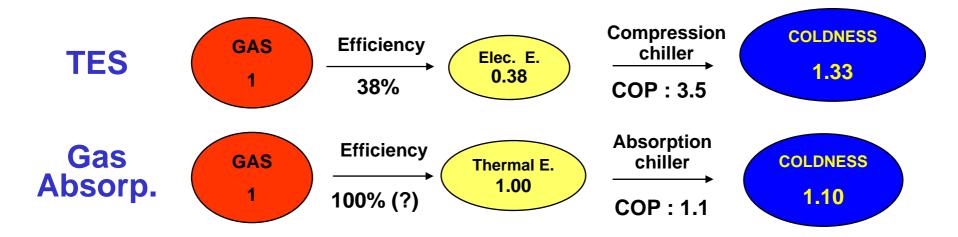
Saving fossil fuel cost as well as construction cost for new plant

Facility Owners aspects

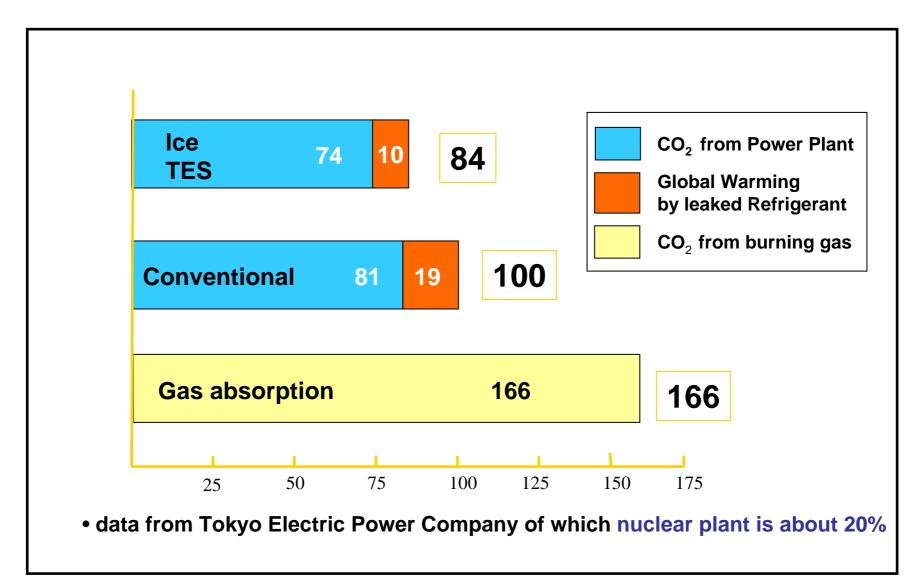
* Saving in utility cost with low electricity tariff during off-peak

* Stable operating with additional cold source() with storage

→ Saving utility cost as well as stable operating of cooling system


Method of Cooling or Refrigerating

(1) Vapor Compression (2) Absorption

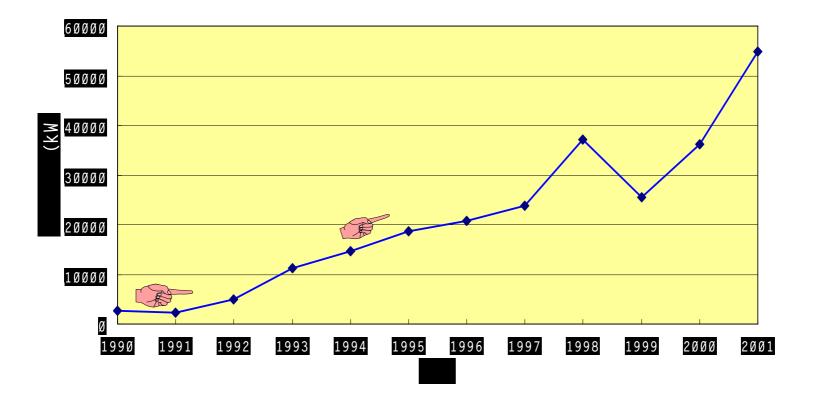

COP : Coefficient of Performance

definition : the ratio of <u>coldness output</u> to <u>energy input</u>

	(1) Vapor Co	ompression	(2) Absorption	
Energy	Electricity for motor		Gas or Coal for boiler	
000	Chilled water	lce	Chilled water only	
COP	Higher than 4	About 3	Max 1.1	

CO_2 emission from various cooling methods

III. What is in TES


Chilled Water TES (CW TES) <u>Stratified CW TES</u>

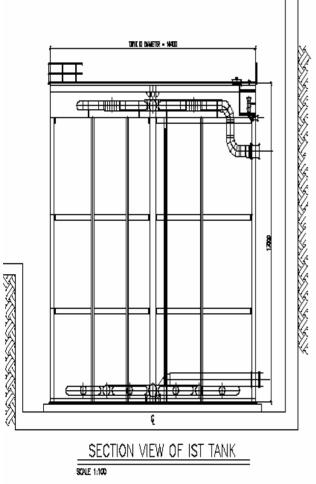
Ice TES Ice-on-Coil Slurry Capsule

* Capsule is mentioned at the last, but not the worst. It is the best

Growth of TES in Korea

starting year : USA - 1980 Japan- 1985 Korea- 1991
about 10 companies are in the market

These may be yours for DSM tomorrow


- Ice TES references
- Chilled Water TES references

Ice TES (1/2)

Cylindrical Steel Tank Type

Biopolis Proj. at Singapore

Capacity : 32,800 RT-Hr Tank : • 16 x 17 m

- 1st project of conversion from CW TES to Ic → very smart design !
 - → Increasing cooling capacity about 4 t
 - → good for continuing expansion of dever with existing power plant

Ice TES (2/2)

Concrete Tank Type

Sang-Am DMC 45,000 RT-Hr 18x7x7 m, 4 sets

Rodamco Plaza 24,000 RT·Hr 15x10x9m, 1 set 15x4x9m, 1 set

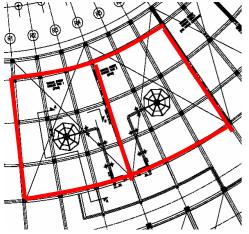
63 Bldg. Seoul 17,900 RT-Hr 13x14x8m, 1 set

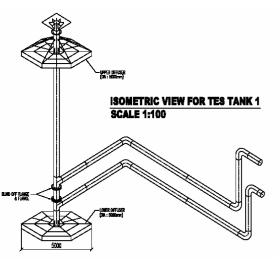
Chilled Water TES (1/2)

Steel Tank Type

Dubai Investment Park

upper radial diffuser


lower radial diffuser



Chilled Water TES (2/2)

Concrete Tank Type

Nanyang Tech. Univ. at Singapore 22,000 Rt·Hr 15x19x21 m , 2 sets

Korea Aerospace Ind.

14,274 Rt[•]Hr

References of Thermal Storage Installation

List of projects with the pride of good performance of Ice-Bon and Aqua-Bon (selected projects only)

Aqua-Bon Chilled Water TES

Ice-Bon Ice TES

More than 40 projects

PROJECT	Completion Date	Tank m X m X m	Capacity RTHr
LG-SILTRON Plant #3	2002. 09	15 X 45 X 6	6,700 RTHr
OTIS-LG	2003. 6	45 X 8 X 8	9,770 RTHr
Daehan Fabric	2005. 03	Φ 19 x 15	14,000 RTHr
Republic Poly.	2005. 04	15 X 19 X 21 (2 set)	26,000 RTHr
LG Philips LCD Plant #7	2005. 10	94 X 10 X 13	27,000 RTHr
Tabreed T-06	2005. 11	Ф 20.0 X 15.0	12,000 RTHr
Tabreed Al Dhafra	2006. 02	Փ 19.5 X 15.0	10,000 RTHr

more than 150 projects

PROJECT	Completion	Tank	Capacity
TROJECT	Date	m X m X m	RTHr
KyoBo Insurance	2002. 12	15 X 13 X 6	13,200 RTHr
63 Building	2003. 06	13 X 14 X 8	17,900 RTHr
Rodamco Plaza	2003. 04	15 X 10 X 9 & 15 X 4 X 9	24,000 RTHr
National Museum	2003. 06	46 X 6 X 5	13,000 RTHr
Sang Am DMC	2006. 05	18 X 7 X 7 (4 set)	45,000 RTHr
Biopolis	2006. 12	Փ 16 x 17	32,800 RTHr

Retrofitting of 63 Building in Seoul, Korea

- Originally completed in September 1986 and a landmark building in Seoul, Korea
- Total floor area : 166,000 m²
- Office, department store, convention centre and many retail stores
- Peak cooling load :

Original design - 3,000 RT (Gas ABS chillers) + 2,100 RT(turbo chillers) After retrofitting - 3,000 RT (Gas ABS chillers) + 3,900 RT (Ice TES of EnE System)

(1) Brief on M&E retrofitting

- . 63 Building was due for M&E replacement due to inefficient operation of 18 years old equipment
- Furthermore, the cooling load increased 35% from 5,100 RT to 6,900 RT due to office equipment load increase, increasing retail demands and global warming compared to that of 18 years ago.
- 3 each of 1,000 RT gas absorption chillers were replaced to 3 new unit for 3,000 RT cooling load
- 3 each of 700 RT turbo chillers were replaced to 3 each of 750 RT brine chillers with 17,000 RT hr lce TES for the 3,900 RT cooling load
- If Ice TES was not employed for meet increased cooling load 3,900 RT from previous 2,100 RT, 63 Building would have had to install 3 each of 1,300 RT turbo chillers.
- Ice TES supplied by EnE System has a storage capacity of 17,000 RT·Hr which correspond to a 1,700 RT chiller since it is designed to discharge the coldness for 10 hours.
- The abandoned oil tank which had not been used after natural gas pipe line was connected was ideal for thermal storage tank for EnE's Ice-Bon cooling system

(2) List of equipment installed and assessment

	CONVENTIONAL - Proposed new equipment to be installed			Ice TES - EnE's Ice Bon System		
	Capacity	Quantity	Electric	Capacity	Quantity	Electric
			Power			Power
Ice Storage	_			17,000 RT·hr		
01-111-1	1 000 DT	3	2337 kW	(Day) 750 RT	3	1526.1 kW
Chiller	1,300 RT			(Night) 580 RT		1420.5 kW
Cooling Tower	1,600 RT	3	225 kW	1000 RT	3	142.5 kW
Water Pump	175 hp	4	492.2 kW	100 hp	4	281.3 kW
Brine Pump				60 hp	3	112.5 kW
				50 hp	1	46.9 kW
				40 hp	2	75 kW
Plate Heat Exchanger				900 RT	2	
				800 RT	1	
				650 RT	2	
Total electric			3054.2 KW			2184.3 kW
Power			3034.2 NW			2104.3 KW

Electric Power

	CONVENTIONAL	Ice TES	Remarks
Required Power	3,054.2 kW	2,184.3 kW	~ 30 % saving

Operating Cost

CONVENTIONAL		Ice TES	Remarks
Operating Cost	448,079,000 KRW	164,079,000 KRW	~ 63 % saving

Note : Calculation based on electricity tariff in Korea

Ice TES - 73.4 KRW/kWh for on-peak time

26.9 KRW/kWh for off-peak time (22:00 ~ 08:00)

CONVENTIONAL - 111.9 KRW/kWh for day time

TES for air-conditioning could achieve about 600 MW peak shaving for KEPCO.

EnE System, Inc