# REE Demand Participation Workshop

Richard Formby
Operating Agent
IEA DSM Task XI

19 October 2005 Madrid, Spain





## Why should customers participate?

- Income Stream
  - Generate an income stream to offset energy costs
- Environmental Benefits
  - Load management results in lower CO<sub>2</sub> emissions
- BETTA
  - TNUoS costs will increase under BETTA
- Aggregation to 10's of MW
- Environmental, "feel good"



## **UK Demand Side Aggregator**

- Demand reduction by SO single instruction
- Aggregator has contracts with SO
- Aggregator has contracts with customers
- Aggregator has 24 hr managed control room
- Aggregator manages demand using communications with customer end uses
- Aggregator schedules customer demand switching to maximise profit in meeting contract with SO
- Hundreds of megawatts at present



# Frequency Response Service

- Instantaneous trips if Frequency falls below trigger point
- Gaz de France ESS aggregate to provide "total service" to SO
- Gaz de France ESS paid for MWh provided to SO
- Gaz de France ESS take commission and communications costs then pay each customer for MWh



# Standing Reserve

- 20 minute notice to reduce load or start up standby generators
- Gaz de France ESS act as customer agent to provide service to SO
- Gaz de France ESS paid
  - Daily "Option fee" for MWh capacity
  - "Utilisation Fee" for MWh delivered when called
- Gaz de France ESS take commission then pay customers for each MWh provided



#### **Demand Turndown**

- 2 hours notice to load manage for up to 3 hours
  - Provides "Margin" and hence system security
  - Telephone instructions from SO
  - Used in event of large generator failure
- Manual provision of half-hourly data each week
  - Shows site was "available"
- Utilisation payments paid by SO
  - Sites paid for MWh delivered during calls
  - Gaz de France ESS take commission
- Runs Winter 04 (Nov 04 to March 05)
  - 40MW current participation with Gaz de France ESS



## **Export Contracts**

- Sites with on-site generation
- Gaz de France ESS purchase export from customers
- Standard 6 day tariff (peak, peak shoulder, weekend, winter day, summer day and night)
- Paid on metered volume exported
- As simple as buying electricity
- >1MW aggregation



## Customer Real Time Metering



It is read on site by a

**GdF** supplied PC



#### Benefits of Real Time Metering

- Real time metering to monitor efficiency of demand forecast
- Identify problems of "availability"
- RTM combined with accurate forecasts and frequent updates from customers
- Improved demand forecasting reduces imbalance costs and hence lower prices
- Validation



# How can smaller customers participate?

- Aggregation
- Different validation needed for smaller customers
- Will customers respond to TOU/RTP prices, hour ahead, fixed tariffs, peak pricing?
- How much saving can be produced (money, CO<sub>2</sub>?)
- Different notice/response times
- Remote demand switching?



# Individual End Use Contribution to Peak Demand





# Applications and Operation for Smaller Customers

#### Potential loads are:

- Storage heating, cooling and water heating (switch energy "in"/"out")
- Direct space heating (modify thermostat settings)
- Direct water heating (modify thermostat settings)
- Direct space cooling (modify thermostat settings)
- Embedded generation (start out of heat led regime)
- Fridges and freezers (switch off for short period)
- Washing machines (disable for period, change time schedule
- Cooker (disable for period)
- Sauna, car heaters (disable for period)
- Direct electric showers (disable for period)



### Subtasks 1,2,3

- Subtask 1 Quantify demand disaggregation/ feedback methods, benefits and viability
- Subtask 2 Quantify impact of time of use pricing for smaller customers
- Subtask 3 Quantify bidding, validation and control mechanisms for smaller customer DSB



# Results of Aggregated Smaller Customer Trial

#### Correlation of MW achieved vs Time of Call off





### Summary of Results/Conclusions

- Annual Payment of Euro 234 available as incentive
- Automatic intervention preferred by customers
- Combinations of Tariff, Dynamic, Real Time in same household
- If no customer override, then single rate metering
- Supplier/ESCO/Aggregator needed



### Summary of Results/Conclusions

- Can be implemented using existing technology
- Space heating, cooling, refrigeration, water heating, embedded generation
- 0.5-3kW potential per customer
- Customer motivations requires development
- Economics attractive if one way communication acceptable



## Proposed Extension Subtasks

#### Subtask 4:

- Understand smaller customer willingness to modify end uses demand
- Profile settlements

#### Subtask 5:

- Evaluate methods for validating demand
- Define business architectures

