

Blockchain Distributed Ledgers in the energy transition

David Shipworth

d.shipworth@ucl.ac.uk

Professor of Energy and the Built Environment, UCL Energy Institute
IEA Demand Side Management TCP Vice-chair and BEIS Industry and
Academic Delegate

PACE Research group: https://www.ucl.ac.uk/bartlett/energy/PACE

Characterising the transition

Decarbonised

Renewables are low density & intermittent, making the energy system more 'supply-led'

Distributed

Low energy density necessitates distributed generation and bi-directional energy flows

Digitialised

- Controlling supply-led, distributed, intermittent generation requires a smart grid
- This requires a very low cost transaction layer to support energy exchanges at the grid edge

Disintermediated

- Lowering transaction costs requires automation and disintermediation
- Growing societal demand for collaborative economy models and 'localism'.

Democratised

- Supply-led distributed generation & control requires actively/passively engaged consumers
- Expectations of service delivery & consumer engagement are shifting in the digital economy
- Thus engaged consumers are at the heart of the new services based energy system

Differentiated

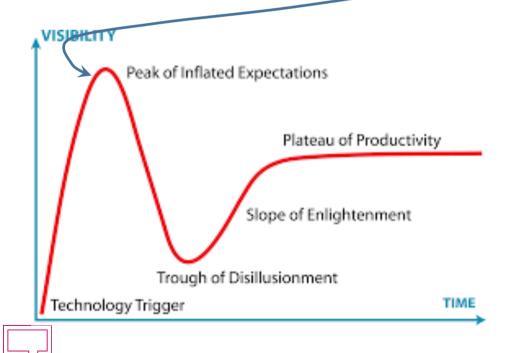
- By value. Energy services have multiple social and economic values
- By place. Each of these values change by network, social and environmental context
- By time. Each of these contextual values change over time from milliseconds to decades

Democratised: The EU 4th Electricity Directive

3 RD ELECTRICITY DIRECTIVE	PRODUCTION	WHOLESALE MARKET COMMODITY		WHOLESALE MARKET SERVICES		RETAIL MARKET	
		DIRECT	INDIRECT (AGGREGATOR)	DIRECT	INDIRECT (AGGREGATOR)	DIRECT	INDIRECT (AGGREGATOR)
INDIVIDUAL PROSUMERS	/	×	×	×	×	×	×
COLLECTIVE PROSUMERS			×		×		×
4 TH ELECTRICITY DIRECTIVE	PRODUCTION	WHOLESALE MARKET COMMODITY		WHOLESALE MARKET SERVICES		RETAIL MARKET	
		DIRECT	INDIRECT (AGGREGATOR)	DIRECT	INDIRECT (AGGREGATOR)	DIRECT	INDIRECT (AGGREGATOR)
INDIVIDUAL PROSUMERS	/	/	/	\	/	×	/
COLLECTIVE PROSUMERS	/	/	/	/	/		
NO ACC		ACCESS WITHOUT ACCESS WITH SPECIAL PROVISIONS SPECIAL PROVISIONS					

Democratised: European legislative changes

- France (April 2017) amended Article D of their Energy Code to support electricity self-consumption at the grid edge.
- Germany (June 2017) amended their German Renewable Energy Sources Act (EEG 2017) to explicitly include PV tenant electricity consumption.
- Austria (August 2017) likewise begun changing its legislation to better support self-consumption.
- Luxembourg (March 2018) adopted draft legislation regulating selfconsumption and promoting the active role of prosumers.
- Spain Balearic regional government (2018): law under consultation to incentivise residents to participate in community RES projects, and share prosumer energy between residents.



Distributed Ledgers 101

(The most exciting thing since double-entry book keeping.)

Blockchain 101 - A Visual Demo by Anders Brownworth < https://www.youtube.com/watch?v=_160oMzblY8>

Gartner's latest 'Hype cycle' for emerging technologies puts blockchain here.

- Distributed Ledgers ≠
 Blockchain ≠ Bitcoin
 - Cryptocurrencies are one application of blockchains
 - Blockchains are one class of Distributed Ledgers
 - Graphical structures will probably supersede blockchains for most applications.
 - e.g. IOTA; Hashgraph;
 Spectre, etc

DLT-101: fundamental properties

- Distributed nature allowing system resilience:
 - Social resilience through distribution of political/economic control;
 - Cybersecurity resilience through avoiding a central point of failure;
 - Physical system resilience through distributed asset control and subsystem independence.
- From trust in actors to trust in the system allowing:
 - Trading between unknown parties;
 - Fair trading between parties of unequal knowledge/power;
 - System action transparency.
- Immutable accountability allowing:
 - Fair and transparent trading
 - Tracking Guarantees of Origin of renewables and carbon
 - Evidencing and authenticating Demand Side Response
- Digital asset scarcity allowing:
 - Trading in a zero-sum pooled resource systems like money and energy
 - Creating value for non-monitised social goods

Distributed ledgers 101

(The political economy of Distributed Ledgers)

- Distributed ledgers enable users to agree on the historical record in a way that is (ideally) fast, fair and final.
- Approaches to achieving consensus
 - Controlling the means of production (Proof of Work)
 - Bitcoin; Etherium (current), etc
 - Electing/Appointing leaders (incl. Proof of Authority)
 - Paxos, Raft, Hyperledger, etc
 - Trusting free markets (Proof of Stake)
 - Etherium (future)
 - Referenda (Voting systems)
 - Hashgraph ('virtual' voting)

Distributed ledgers 101

- The 'Internet of Value'
 - Internet makes copying & distributing information easy,
 but protecting & exchanging information assets hard.
 - Distributed ledgers create scarcity value for information assets, and protocols to support an 'Internet of value'.
 - "The blockchain makes information look like a thing."
 - [Joe Ito MIT Media Lab]
- Why use distributed ledgers for energy trading?
 - DLTs made digital coins behave like physical coins.
 - Currencies require coins (e.g. £) to be recorded (in ledgers), balanced (i.e. zero-sum), and settled –
 i.e. just like electricity trading.

Distributed ledgers 101

- Open to all participating parties:
 - Permissioned blockchains can only be accessed by authorised users
 - Public blockchains are open to anybody (e.g. like Bitcoin)
- Distributed:
 - Ledger held by all parties & changes agreed by consensus
- Trustless & Disintermediating:
 - Require no centralised/trusted intermediary
- Cryptographically secured:
 - Privately secured with public/private key encryption

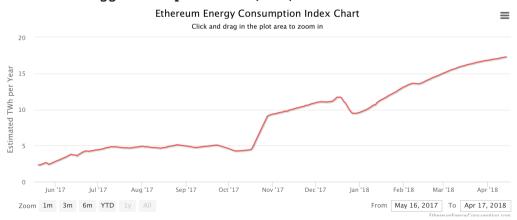
Distributed Ledgers & Smart Grids

- A smart-grid requires:
 - A data infrastructure that:
 - Can be used by mutually competing and distrustful entities
 - Ensures integrity, authenticity, commercial secrecy and customer privacy
 - Cannot be compromised by any single entity
 - A financial transaction layer that:
 - Supports product and service innovation
 - Minimises or eliminates transaction costs
 - An IoT control architecture that:
 - Is compatible with component APIs
 - Supports an ecosystem of smart-controls (smart-contracts; distributed computing, fog computing)
 - Is distributed to minimise latency and energy, and enhance privacy.
- Distributed ledgers can provide the transaction and control layer for the smart-grid

Challenges: Distributed ledgers

- Throughput/scaling (transactions per second)
- Latency (time per verified transaction)
- Security: (Inputs, coding flaws; consensus mechanisms)
- Size and bandwidth (Existing tech doesn't scale well)
- Privacy: (reidentification and GDPR compliance)
- Smart contracts: (Correctness, predictability, legal status)
- Energy intensity: (varies widely by system)
- Usability: (Current APIs and apps are not user friendly).
 - (Ref: Yli-Huumo J, D, Choi S, Park S, Smolander K (2016) Where Is Current Research on Blockchain Technology?—A Systematic Review. PKo LOS ONE 11 (10):e0163477. doi:10.1371/journal.pone.0163477)

DTL Energy consumption


<Ref: https://digiconomist.net>

- Energy use depends on security and consensus mechanisms.
- 'Mining' = energy
 - Bitcoin ~ 60 TWh/year (~30MtC)
 - Ethereum ~ 15 TWh/year
- New 'graphical' DLTs like
 Hashgraph & IOTA use orders
 of magnitude less.
- Bitcoin is a dinosaur but dinosaur's evolved into birds.
 That's what's happening now

Bitcoin Energy Consumption Index

Ethereum Energy Consumption Index (beta)

Challenges: Distributed ledgers

- Blockchain governance
 - Who agrees changes to the rules governing the blockchain. Is it done by proof of work (miners); proof of stake (coin holders); or proof of authority (founders)?
 - Decred; e.os and others are working on this
- Multichains and parachains accommodating a diversity of distributed ledgers
 - There are many blockchain and distributed ledger architectures with different functionalities. How can interoperability best be delivered?
 - Polkadot and others are working on this.

Standards

- Increasing calls for standards.
- The EC is working on standards in FinTech and cryptocurrencies
- No work yet in energy
- Regulation of Initial Coin Offerings/Token Generation Events
 - US Securities and Exchange Commission adjudication on the DAO
- The Howey test of securities and investments

Challenges: Governance

Policy

- Key UK Opportunities: Smart Metering Implementation Programme
- Moving to outcome based policies and metrics
- Mitigating distributional impacts (e.g. grid defection)
- Mitigating whole energy system impacts (e.g. balancing the legacy grid)
- Building trust, salience and social value in the energy system
- Avoiding energy data siloing building open platforms of analysable but encrypted data

Regulatory

- Key UK Opportunities: Ofgem Innovation Link and Regulatory Sandbox
- Moving to principles based regulation
- Reducing barriers to market entry
- Ensuring customer protection to all groups
- Balancing economic efficiency and fairness

Energy codes

- Key UK Opportunities: Elexon BSC P 362 Electricity Market Sandbox and BSCP 550 Shared SVA Meter Arrangements
- Balancing and Settlement Code alterations
- Master Registration Agreement alternations

Evidencing demand response and flexibility services

DLT Use cases

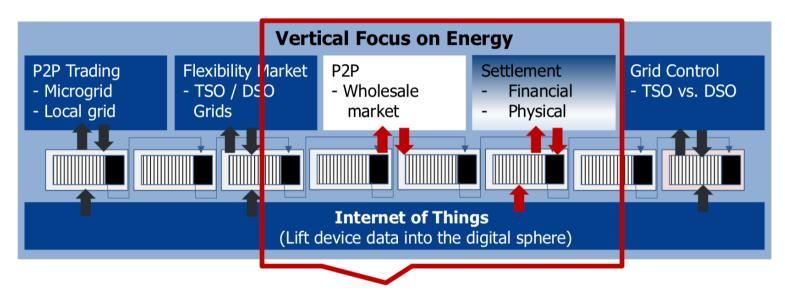
- ~ 1000 use cases;
- ~100 start-ups;
- ~10s of PoCs;
- A few physical trials;
- Very few working business models.

 Figure 7 'Results of potential use cases of Blockchain in the energy sector', p.20 in Burger C, Kuhlmann A, Richard P, Weinmann J (2016) Blockchain in the energy transition: A survey among decision-makers in the German energy industry. ESMT European School of Management and Technology GmbH Deutsche Energie-Agentur GmbH (dena) - German Energy Agency

LO3 Energy

http://lo3energy.com/

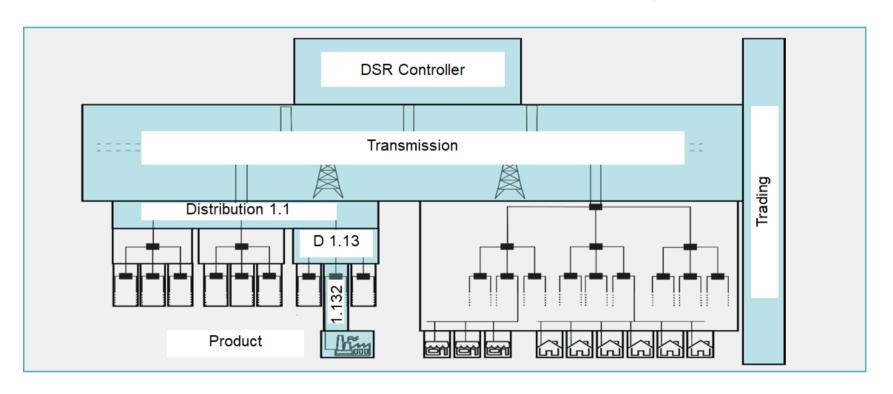
- Brooklyn Microgrid (~130 sites)
 - Apr 2016 P2P energy trading
 - Feb 2017 P2P energy + efficiency trading through IoT device activation on the blockchain.
 - Environmental, resiliency, community and financial consumer value propositions.



Wholesale energy trading: PONTON Enerchain

- Horizontal Features & Challenges
 - Access; Identity Management; Archive historic blocks
 - Load; Performance; Stability; Security; Privacy
- PoC phase 2 ends March 2018, 38 companies, hand-over to new governance structure underway

Ref: <https://ponton.de>



Electron < electron.org.uk >

- Currently, bilateral trading in the DSR market precludes value aggregation across multiple beneficiaries.
- Electron are looking to release value through collaborative trading of DSR as a non-rival good.
- They disaggregate the components of DSR into its nonrival elements, and allow companies to price them individually.
- They then use blockchain to record all the trading commitments from the industry and enforce the trading protocols of the platform.

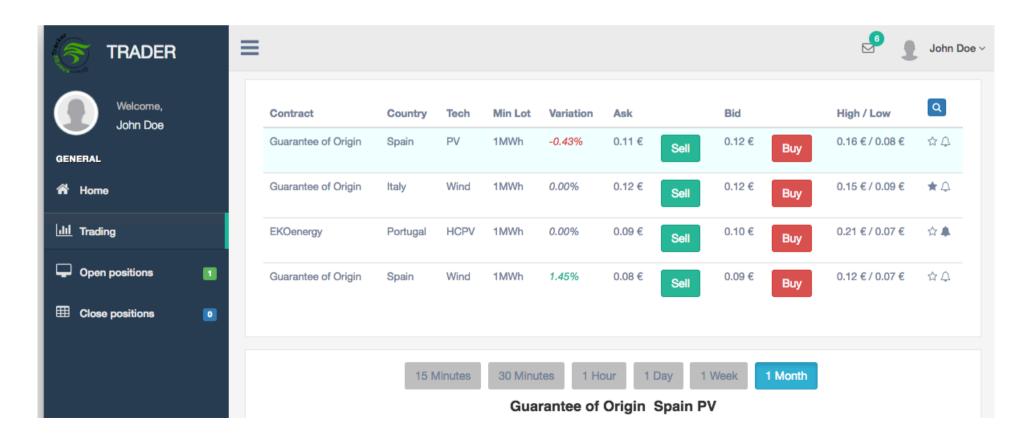
This then:

- creates fair and transparent DSR value allocation;
- facilitates trades that wouldn't otherwise happen;
- Encourages greater liquidity and participation in DSR;
- generates significant cost savings;
- leads to better investment decisions; and
- lowers carbon emissions across the energy industry.

M-PAYG

http://www.mpayg.com

- Microfinance + renewable energy company
- Allows low-income households in developing countries access to solar energy
- Cryptocurrency microfinanced via SMS mobile
- 50w PV + battery + control system hardware
- Users pay 5 USD/month up front for one months unlimited access to power from a solar panel.
- Lease to own model 36 payments unlocks the panel
- Repeated payments build credit rating and access to credit purchase of additional appliances
- Microfinance payments and smart contracts executed on blockchains.
- Rolling out in Tanzania,
 Uganda & Kenya



Green Energy Tracker

https://greenenergytracker.eu

 Green Energy Tracker uses DLTs to verify and track Guarantees of Origin for EU Renewables.

Start-up finance

Greeneum POWERING THE FUTURE Pre Sale starts Oct 26th 03 Contribute with 20% bonus EMAIL ADDRESS WELCOME TO THE TOKEN GENERATION EVENT Re-imagining the Electricity Network AUD \$34 000 000 Raised in Pre-Sale + Mainsale! Check your POWR tokens here

https://www.greeneum.net; https://gridplus.io
https://powerledger.io; http://lo3energy.com

During the GRID token pre-sale, Grid+ sold **36,422,909 GRID tokens** and currently holds the following assets:

- 85,407.0 ether
- 584.8 bitcoin
- \$125,000.00 USD

Using today's prices, these assets sum to roughly \$27.7M. In terms of USD collected at the time of sale, the total is \$29.0M.

With the pre-sale officially finalized, this leaves **53,577,091 GRID tokens** for sale in the **public token sale on October 30**.

LO3ENERGY

Recommended reading

Videos:

- 'Peer-to-peer energy trading on blockchains' David Shipworth https://www.youtube.com/watch?v=AcufQeaOK1U
- 'Blockchain 101 A Visual Demo' Anders Brownworth < https://www.youtube.com/watch?v="160oMzblY8">htt

Podcasts:

- Epicenter episode 174 Carsten Stoker: 'How blockchains will power the energy grids of tomorrow', Epicenter Weekly podcast on Blockchain, Ethereum, Bitcoin and Distributed Technologies, Duration 1:05:53
- Epicenter episode 206 Karl Kreder: 'Grid+ Unlocking Direct Access to Wholesale Energy Markets', Epicenter Weekly podcast on Blockchain, Ethereum, Bitcoin and Distributed Technologies, Duration 1:00:47

Consultancy reports:

- Burger, C., et al. (2016). Blockchain in the energy transition: A survey among decision-makers in the German energy industry,
 European School of Management and Technology GmbH Deutsche Energie-Agentur GmbH (dena) German Energy Agency.
- PwC (2016). Blockchain an opportunity for energy producers and consumers?, PWC Global Power & Utilities: 46.
- Mattila, J. et al. (2016). Industrial Blockchain Platforms: An Exercise in Use Case Development in the Energy Industry. <u>ETLA Working Papers</u>. Finland, The Research institute of the Finnish Economy.

Academic articles:

- Morstyn, T. et al. (2018) 'Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants',
 Nature Energy. Nature Publishing Group, 3(2), pp. 94–101. doi: 10.1038/s41560-017-0075-y.
- Mengelkamp, E. et al. (2017) 'Designing microgrid energy markets: A case study: The Brooklyn Microgrid', Applied Energy. doi: https://doi.org/10.1016/j.apenergy.2017.06.054.
- Chen, S. and C.-C. Liu (2017). "From demand response to transactive energy: state of the art." <u>Journal of Modern Power Systems</u> and Clean Energy 5(1): 10-19.
- Yli-Huumo, J., D. Ko, S. Choi, S. Park and K. Smolander (2016). "Where Is Current Research on Blockchain Technology?—A
 Systematic Review." PLOS ONE 11(10): e0163477.
- Green, J. and P. Newman (2017). "Citizen utilities: The emerging power paradigm." Energy Policy 105: 283-293.

