Quartierstrom

Implementing and Testing a Local Electricity Market in the Real World

Verena Tiefenbeck,
Bits to Energy Lab,
ETH Zurich

IEA DSM Day: Policy and Business Models for the Digital, Customer-centred Energy Transition April 3, 2019

The project is supported by the SFOE within the framework of its pilot, demonstration and flagships program.

Swiss Federal Office of Energy (SFOE)

Universities

Industry Partners

We evaluate different dimensions that determine the feasibility and efficiency of peer-to-peer electricity trading.

ETH/HSG main **research** focus

- Technical feasibility
- Market design and mechanisms
- User interaction and engagement

Project partners lead work on

- Business models
- Regulatory aspects
- Privacy aspects

Our team at ETH Zurich and the Unversity of St.Gallen

Sandro SchopferETH ZURICH
Project lead / development

Verena Tiefenbeck

ETH ZURICH

Scientific supervision

Anselma Wörner
ETH ZURICH
Market design

Liliane AbleitnerETH ZURICH
Frontend & user experience

Arne MeeuwUNIVERSITY OF ST. GALLEN
Development

Felix Wortmann
UNIVERSITY OF ST. GALLEN
Scientific supervision

Bosch IoT Lab

Decentralized energy markets

Trading between prosumer and consumer

Traditionally, utility companies deliver electricity to their customers (one-way).

Today, customers with PV panels can sell excess production to the utility company at a fixed feed-in tariff.

The consumer - prosumer – transition as of today

- Prosumers reduce dependence on fossil and nuclear fuels and the utility/grid operator. But 100% selfsufficiency is economically unrealistic
- **Falling feed-in-tariffs** make prosumer investments less attractive
- **Consumers** who cannot transform to prosumers do not profit from the decentralization of the energy system
- Prosumers and consumers as price takers

Quartierstrom: Prosumers market excess solar energy directly within a peer-to-peer community.

Self-consumption is prioritized.

Both consumers and prosumers can set prices, creating a decentral market place.

Prosumers

place bids for selling solar energy in the decentralized market

Consumers

place bids for buying local solar energy

Utility company

- participates in the local market
- supplies residual energy and buys exports

→ Incentivizes local balancing

Pilot region: Walenstadt

Modern infrastructure and high prosumer ratio

The pilot community is located in Walenstadt (SG), Switzerland.

The pilot community already features an innovative energy infrastructure.

Innovative utility company WEW

Existing prosumers (31 of 37)

Existing storage systems (9)

Charging stations close by

The Quartierstrom system

The field phase went live in December 2018

Key work packages and parties in charge

Management system

- User input
- User feedback

Market and mechanism design

- "Bidding language"
- Market price and allocation
- Definition of transactions

- Data-Feed
- Transaction settlement and clearing
- Security and consensus

HOCHSCHULE LUZERN

품

Communication

egal and model Business

Cleantech 21

Technical implementation: A few impressions from the rollout preparations and maintenance...

Testbench (11 RaspberryPi & Networking)

Hardware Install Tool (SmartPi Tester)

First installed devices (September 2018)

Maintenance (remote CLI for all devices)

Pictures: Arne Meeuw

Technical implementation: A few impressions from the rollout preparations and maintenance...

Market design: Different forms of allocation are conceivable – we opted for an auction mechanism.

Central optimization

Auction mechanism

Bilateral agreements

Smart meters communicate the individual households' price limits, electricity consumption and production every 15 minutes.

Every 15 minutes a double-sided auction takes place automatically (implemented as smart contract).

Demand

participant_ID	timestamp	volume [kWh]	price_per_kWh [CHF]
house_2	14:19:21	15	0.21.
house_1	14:17:00	5	0.25
house_3	14:24:03	20	0.19

Supply

participant_ID	timestamp	volume [kWh]	price_per_kWh [CHF]
pv_2	14:19:21	10	0.11
pv_6	14:17:00	15	0.16
pv_1	14:24:03	25	0.13

Electricity is allocated using a double auction mechanism

- Time-discrete double auction with discriminative pricing
- Auction is cleared every 15 minutes
- Smart meters submit bid with load measured in the last 15 minutes every 15 minutes
- Consumers define willingness to pay for local electricity and prosumers minimum price they ask for

The resulting prices automatically reflect the availability of solar energy.

Supply and demand on a sunny...

...vs. on a cloudy day

Current status and wrap up

In January-March 2019, 72% of the solar energy was consumed locally and 26% of the demand was covered locally.

The peer-to-peer market increased both local production (self-sufficiency) and local consumption (self-consumption) considerably.

Quartierstrom data, 01.03.-31.03.2019:

- Self-sufficiency: 19.0%
- Self-consumption: 36.0%

With Quartierstrom system:

- Self-sufficiency: 34.1%
- Self-consumption: 64.6%

Login data: The participants log in more often than anticipated.

Key success factors: The lab's vast experience with interdisciplinary field experiments and an innovative utility company.

- Research with human subjects approved by ETH ethics committee
- Extensive prior work on **user engagement** and feedback interventions
- Walenstadt residents trust the local utility company
- Recruitment: SF0E required a minimum of 20 participating households 41 households contacted 37 participate

Wrap up

- Field experiment in pilot region Walenstadt with 37 participating households ongoing
- Blockchain-based peer-to-peer exchange, time-discrete double auction
- Self-sufficiency and self-consumption increased considerably (almost doubled)
- Participants actively use the system, adjust their price bids and frequently check load curves (volunteer selection bias..?)

Thank you for your attention.

Dr. Verena Tiefenbeck

Bits to Energy Lab

ETH Zurich

vtiefenbeck@ethz.ch

Please visit our websites

www.quartier-strom.ch

www.bitstoenergy.com

Backup slides

Netzkostenaggregierung «Top-down»

Netzebenen Netzkosten Übertragungsnetz K₁ **2** Transformierung K₂ Netzstrom **3** Überregionales Verteilnetz **K**₃ **4** Transformierung K 4 **5** Regionales Verteilnetz K 5 **6** Transformierung K 6 7 Lokales Verteilnetz K 7

Community-Tarif «Bottom-up»

The Quartierstrom WebApp informs users about their energy data

Tendermint blockchain infrastructure running on SmartPi 2.0

Role of Prosumer

- Active inclusion of the producing parties
- Utility company is equal to prosumers

Efficient Decentralisation

- From "Proof of Work" to "Proof of Stake"
- Avoid expensive calculations
- Delegate to trust to initial investors

Financial Settlement

 Possibility to connection to public blockchain (Cosmos network)

Image: Arne Meeuw, Bosch IoT Lab, Team Meeting 01/2019

Users can set their price limits

the utility provider

Image: Liliane Ableitner, Bits to Energy Lab, 2019