

An Energy Market for Rural, Islanded Micro-grids

Presented by: Alex Densmore 31 March, 2015

Overview

- Context
- Problem Statement
- Proposed Solution
- Methods
- Results
- Discussion
- Future Work

Context

- Renewable energy micro-grids are increasingly seen as an important tool in electrifying rural areas while meeting lowcarbon goals
- In general, micro-grids fit above lanterns and SHS in terms of the energy access "ladder".
 They are not appropriate for all situations.
- There is a desire for private-sector investment

Problem Statement

- Little data exist to repeatably estimate rural energy use in a variety of contexts (geography, culture, income sources, etc)
- Uncertainties in estimating user demand lead to great investor risk in providing funding for capital expenditures
- Difficult to acquire private-sector investment
- Once built, grid is inflexible to changing conditions
- Link between electrification and income-generating activities is weak

Proposed Market Framework

Goals:

- Maximize revenue for grid operator (within constraints)
- Optimize user experience
- Provide revenue source for local entrepreneurs

Implementation:

- Adapt pricing to expressed user demand
- Allow local entrepreneurs to participate in the buying and selling of electricity

- Comparison of proposed market to a fixed-price scenario
- Computer simulation HOMER + custom modeling in Python
- Sensitivity analysis of unknown variables (price elasticity, demand)

Households (avg. 220Whr per HH per day)							
Quantity	17	17	17	17	16	16	
% of total load	20%	10%	8%	22%	27%	13%	
Max. price willing to pay	1.5	1.5	1.5	1.5	1.5	1.5	
Entrepreneurs			Operator				
Quantity	4 PV Peak Output			8kW			
Battery Size (ea.)	7kWh	Battery Size			32kWh		
Electricity sale price	1.5	Max hourly change in price			+/-0.5%		

Change prices based on load-shedding frequency (scarcity):

0% of the expected load was shed in the previous period	Lower the price to induce demand
More than 0% of the expected load was shed in the previous period	Raise the price to reduce demand

Results

Change in revenue and unmet load with proposed market, considering several demand scenarios (-0.7 elasticity of demand)

Change in revenue when considering elasticity of demand (50% demand scenario)

Resiliency to low demand

For example: demand can be 5% less than expected (in the -0.7 elasticity case), yet actual revenue will match initial projections

Discussion

- Entrepreneurs
- System aging
- Communicating price signals & billing
- Trust

Future Work

- Case Studies
 - Benchmark with real-world data
 - Add financial indicators (Payback, NPV, etc)
- Pilot implementation
 - Demonstrate feasibility of market
 - User and investor acceptability
 - Demonstrate ICTs

Questions

Energy Research Centre, Energy Poverty Group

31 March 2015