

Energy Management System for a Residential Grid-Tied Micro-grid

Category: Effective energy use in the home Wilhelm Bisschoff and Rupert Gouws Presenting Author: Wilhelm Bisschoff 01 April 2015

Innovation through diversity 114

Agenda

- Study Rationale
- EMS Strategy
- EMS Design
- EMS Simulations and Results
- Discussion

Study Rationale

- Eskom background
 - Supplies 95% of electricity in SA
 - Tariff increases, unreliable
- With rising electricity costs, there are daily enquiries for resiential PV systems
 - Standalone
 - Grid-tie
- Standalone popular but very expensive
- Grid-tie not favoured in SA due to feed-in policies
 - Advantages: Load balance, grid backup support
 - Disadvantage: No policy, inefficient

Study Rationale

EMS Strategy

- Primary objective
 - Absorb as much as possible of the PV generated energy locally
- Methodology
 - Determine the LSM (Living Standard Measure) group (according to NRS Load Research) most likely to adopt PV systems
 - Draw up a typical residence floor plan and identify controllable loads according to this LSM group
 - Design the EMS according to the researched techniques and shift the load according to the PV input profile

EMS Design

- Typical LSM Class 7 Controllable Loads
 - Geyser
 - Washing Machine
 - Tumble Dryer
 - Swimming Pool
 - Refrigerator
 - Dishwasher
- Additional: Low voltage DC security light system
 - 50W, 12V LED security light system

NORTH-WEST UNIVERSITY YUNIBESITI YA BOKONE-BOPHIRIMA NOORDWES-UNIVERSITEIT POTCHEFSTROOM CAMP US

EMS Design

NORTH-WEST UNIVERSITY YUNIBESITI YA BOKONE-BOPHIRIMA NOORDWES-UNIVERSITEIT POTCHEFSTROOM CAMPUS

EMS Simulation Graphs

EMS Simulation Results

NORTH-WEST UNIVERSITY YUNIBESITI YA BOKONE-BOPHIRIMA NOORDWES-UNIVERSITEIT POTCHEFSTROOM CAMP US

SIMULATION RESULTS				
CHARACTERISTIC	SIMULATION 1 (UNCOMPENSATED)	SIMULATION 1 (COMPENSATED)	SIMULATION 2 (UNCOMPENSATED)	SIMULATION 2 (COMPENSATED)
PV Energy Input (kWh)	15.37 kWh	15.37 kWh	12.58 kWh	12.58 kWh
PV Energy Lost (kWh)	4.94 kWh	0.35 kWh	3.07 kWh	0.14 kWh
PV Energy Consumed (%)	67.7 %	97.7 %	75.6 %	98.9 %
Total Load Requirement (kWh)	35.63 kWh	27.26 kWh	35.63 kWh	26.89 kWh
Utility Supplied (%)	70.7 %	44.9 %	73.3 %	53.7 %
PV System Supplied (%)	29.3 %	55.1 %	27.7 %	46.3 %

Discussion

- The total electricity consumption has been reduced from 35.63 to 27.26 kWh which is a reduction of 23.4 %.
- More importantly, of the 27.26 kWh, 55.1 % thereof is supplied by the PV and only 44.9 % is supplied by the centralized grid.
- This translates to a daily cost of R 18.11 (R 1.48 per kWh) per day for the electricity consumed from the centralized grid. Comparing the system with no EMS installed, a cost reduction of R19.17 or 51.4 % is possible.
- Of the total PV generated electricity, only 0.35 kWh or 2.3 % was lost to the centralized grid. This equates to a total of R 0.52 per day.

Thank You

Innovation through diversity ™

• A microgrid is a group of interconnected loads and distributed energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid and that connects and disconnects from such a grid to enable it to operate in either/both grid-connected or "island" mode.

Project Photos

NORTH-WEST UNIVERSITY YUNIBESTI YA BOKONE-BOPHIRIMA NOORDWES-UNIVERSITEIT POTCHEFSTROOM CAMPUS

Drawings

Project Design

8

