The DC House for Low Power Households – DC-DC Converter Analysis

C. Venter, A. Raji and M. Adonis

Presentation Overview

- 1.Introduction
- 2. Power Budget of a Small House
- 3.DC House Standard Voltage
- 4. The Dc-Dc Converter Evaluations
- 5.LOAD TESTING
- 6.CONCLUSION

INTRODUCTION

- 1. Utilities are under increasing pressure to expand the grid
- 2. Potential customers in remote areas present a challenge
- 3. Use renewable energy sources
- 4. Stand-alone microgrids
- 5. Provide DC power exclusively
- 6. Unique solutions for developing nations

Small house maximum instantaneous power budget (all appliances operating simultaneously)

Power per unit (W)	
1 400	
600	
30	
100	
2 130	

Peak instantaneous power demand ~ 2 500 W

DC House Standard Voltages

- Many standards for various applications
- 120 V DC upper boundary of extra low-voltages International Electrotechnical Commission (IEC)
- EMerge Alliance standard 24 V DC for commercial buildings interiors
- From an economic perspective ...

Voltage	Current	Cable size	Cable price
24 V	145.83 A	50 mm ²	R57.50 p/m
48 V	72.92 A	25 mm ²	R38.78 p/m

THE DC-DC CONVERTER

- Considered boost and buck-boost converters
 - Buck-boost converter
 - Output DC voltage polarity reversed
 - Power switch needs floating drive
 - Boost converter is a simpler implementation
- Design parameters:
 - input voltage 24 V, output voltage 48 V
 - switching frequency 100 kHz
 - load resistance 0.685 Ω
 - output ripple current must be <1%
 - output ripple voltage o.1 V

Boost converter output waveforms

LOAD TESTING CIRCUIT

LOAD TEST SCENARIOS

1. Load increased in intervals of 25%

2. Load increased in one step from 25% to 100%

3. Load decreased in intervals of 25%

4. Load decreased in one step from 100% to 25%

RESULTS

- No applicable National standard for power quality for low voltage DC power systems
- National power quality standard (NRSo48-1/SABSo48o-1) applicable to AC power systems
 - Describes voltage limits
 - For voltage supplies less than 500 V, the maximum deviation should not be more than 15%

RESULTS (CONT.)

- Open loop tests
- Voltage spikes produced:
 - Exists for approximately for 3 ms
 - 3 V p-p (scenarios 1 & 3)
 - 7 V p-p (scenarios 2 & 4)
- Transient range variation
 - Minimum 6.3%
 - Maximum 14.6% (<15%)

CONCLUSION

- Imperative the voltage supply in a residence remains stable and free from excessive spikes and prolonged transients as loads are connected and disconnected
- These voltage variations can cause damage to household appliances
- Various load tests performed show that through many switching scenarios that the load voltage level remains relatively stable
- Boost DC-DC converter a good candidate for implementation in a DC house

THANK YOU

