Evaluation of the Potentials for Hybridization of Gas Turbine Power Plants with Renewable Energy in South Africa

Ву

Edmund C Okoroigwe and Amos Madhlopa

Outline of presentation

- Introduction
- Methodology
- Findings/Discussion
- Conclusion

Introduction

- Fossil fuel issues
 - Emissions , SA contribution (Winkler, et al 2011)
 - Rain water contamination
 - Scarcity/unevenly distribution
 - Prices
- Solution
 - RE tech
 - Low emission
 - Available
 - Improves existing power source
 - GT hybrid (from coal driven to RE driven)
 - RE resources in SA (Amigun et al 2011, Pradhan & Mbowha 2014, DME 2007)

GT fundamentals

Cycles

- ➢ OCGT
- minimal output (30 40 % fuel energy) mech. work, electrical efficiency low, (Poullikkas, 2005)
- Low electrical eff
- Atm heating exhaust gas
- Heat can be used to heat compressed air
- > CCGT
- GT + Steam Turbine
- Increased efficiency (up to 50 %)
- Firing
 - **DFGTs**
 - **EFGTs**

Fig 1 Sketch of simple GT cycle

Fig 2 PV diagram of a Brayton cycle

GT fuels

Heavy duty GT fuel flexibility

Gaseous

- NG, syngas, biogas
- heavy oils,
- LPG,
- petrochemicals (propene, butane, propane)
- hydrogen-rich refinery by-products such as naphtha, ethanol,

Liquid

- ⁻Diesel, aromatic gasoline
- ⁻ biofuels

Fig.3 Natural gas supply

Energy production/consumption in SA

Fig.5 Sectoral electricity consumption in South Africa by March 2014 (data adapted from [Eskom (2014, Jul)].

Fig. 6. Primary energy consumption in South Africa in 2013 [BP Statistical Review of World Energy, (2014)].

Energy production/consumption in SA

Table 1: Eskom's power stations by plant mix [Eskom (2014, Jul)].

Туре	No of stations	Total nominal capacity (MW)
Coal fired	13	35726
Gas/liquid fuel GT	4	2409
Hydro	6	600
Pumped storage	2	600
Nuclear	1	1880
Wind	1	3
Total	27	41995

Plant capacity by %

- GTs, driven by diesel, kerosene and natural gas (DEIAR, 2009; Savannah Environ., 2009)
- OCGT, no hybrids

Hence the need evaluation of hybrid potentials

Hybridization with RE

Combination of two or more different fuel inputs to produce base load.

- Single RE fuel power generation is expensive, eg
- STEP cost is high (Olivenza-Leon et al 2015)
- Fossil only, issues more than cost
- By 1) retrofitting existing system
 - 2) brand new system
- Latter is more promising.

Note: Optimization/simulation necessary in each case

Fig. 7 Serial mode

Fig. 8 Parallel mode

Methodology

Data collection

- Desktop method
- Reports , journal articles, other published works

Data analysis

To obtain annual energy output from resources (MWh/yr)

•
$$E_o = \eta E_i$$

• E_i = input energy from fuel type (resource)

<u>Biofuels</u>

$$E_{i,b} = D_b C_b$$

2

$$E_{o,b} = \frac{\eta_b f_{c,b} E_{i,b}}{3600}$$

 D_b = energy density of fuel (MJm⁻³)

 C_b = annual prod. Capacity (m³/yr)

 η_h = system efficiency

 $f_{c,b}$ = capacity factor of the system

 D_b for biodiesel (33998 MJ m⁻³), bioethanol (23 496 MJ m⁻³) and biogas (24.57 MJ m⁻³), computed from literature

Data analysis

Concentrating solar power (CSP)

$$E_{i,s} = n\eta_s f_{c,s} P_{i,sp}$$

$$\begin{split} E_{i,s} &= \text{annual thermal energy from solar} \\ n &= \text{total number of hours in a yr} \\ \eta_s &= \text{solar collector efficiency} \\ f_{c,s} &= \text{capacity factor of the CSP plant} \\ P_{i,sp} &= \text{total solar resource potential (MW)} \end{split}$$

For solar – biofuel hybrid system,

$$E_{o,sb} = \eta_{GT}(E_{i,s} + E_{0,b})$$

where, $\eta_{GT} = gas$ turbine efficiency, $E_{o,sb} = energy$ output of the hybrid system, $E_{i,s} = energy$ input from the solar field, $E_{o,b} = energy$ input from biofuel combustion processes

Table 2: Data on efficiency and capacity factors of OCGT and CCGT [DEIAR, 2009].

Technology	Fuel type	Efficiency (%)	Capacity factor (%)
OCGT	Biofuel	34	10
CCGT	Biofuel	50	50
OCGT	Solar	20*	30*
CCGT	Solar	50*	50*

5

Findings / Discussion

a) Resource potential

Biodiesel

- Industry still young (Pradhan & Mbowha 2014), resources to expand the industry are available. Implementation of biofuel policy (2%) important.
- Existing industry;

850 x 10³ m³/yr as at 2013 (Modise, 2013)

Feedstock (WVO, canola, soybean)

Biogas

Table 3: Biogas production potential from animal wastes

9	regue production p				
Animal	Average Population (10 ⁶)/yr	Average waste (kg/animal/ day)	Total waste (kg/yr)	Biogas yield (m³/kg dung)	Total biogas (x 10 ⁶) (m³/yr)
Cattle	13.80*ª	10.0 ^b	5.037X10 ¹⁰	0.04 ^b	2014.8
Sheep	0.022*a	2.0 ^b	16.060x10 ⁶	0.05 ^b	0.8030
Goat	0.0021*a	2.0 ^b	1.533 X10 ⁶	0.05 ^b	0.0767
Piggery	0.0016*a	1.2 ^b	0.701 X10 ⁶	0.07 ^b	0.0491
Poultry	999·75 ^{*c}	0.1 ^b	3.649X10 ¹⁰	o.o6 ^b	2189.5
Human	≈ 53 ^d	1.2 ^b	2.321 X10 ¹⁰	0.07 ^e	1624.98
			TOTAL		7088,08

ERC
ENERGY RESEARCH CENTRE
University of Cape Town

MSW - = 4.2x10⁷ m³ (Ogolo et al 2011)

= 0,7kg per capita or 37 100 tons per day (@53 million popn.)

= 442m³/ton of landfill gas (Pitchel 2005)

 $= 16,4x10^6 \,\mathrm{m}^3/\mathrm{yr}$

• Waste water – = $450 \times 10^6 \,\text{m}^3/\text{day}$ (WEC 2014)

CSP

- High SLA of approximately 194 000 km² (Pegels 2010) identified
- if only 1% used = 64GW (Pegels 2010) (@ 30,2MW/km²)
 - = 400GW solar resource (@ 16% S2E eff)
 - = $80GW_{th}$ (20% collector eff)

b) RE-based electricity generation potential

Single source of energy

Table 4: Electricity generation potential of each RE resource

Technology	Potential (x 10 ⁶ MWh/yr)		
	Biodiesel	Biogas	Solar
OCGT	0,27	1,64	210,24
CCGT	2,01	12,09	876,00

Existing GT capacity

2,11 x 10⁶ MWh/yr 10.55 x 10⁶ MWh/yr

Hybrid sources of electrical energy

Table 5: Solar – biofuel hybrid

Biofuel	Potential power (x10 ⁶ MWh)	
	OCGT	CCGT
Biodiesel	210,51	878,01
Biogas	211,88	888,09

Existing GT capacity

2,11 x 10⁶ MWh/yr 10.55 x 10⁶ MWh/yr

Conclusion

- The study is based on OCGT/CCGT/serial hybridization
- Only 2,01 x10⁶ MWh of electricity from biodiesel (CCGT)
- About 12,09 x10⁶ MWh of electricity from biogas (animal wastes) (CCGT)
- About 888,09 x10⁶ MWh of electricity from solar-biogas
- About 878,01 x10⁶ MWh of electricity from solar-biodiesel
- There is potential for solar-biofuel hybridization in SA
- Optimization studies necessary

Thank you for listening

An ISCCS Plant schematic diagram (courtesy: Siemens)

