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NeuralDoodle: Turning Two-Bit Doodles into Fine Artwork




What can we do with machine learning these
days?

e We can paint pictures!
e We can beat top-ranked players at Go!
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AlphaGo beats Lee Se-dol in first of five matches
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What can we do with machine learning these
days?

e We can paint pictures! Lokl (Bl ) = G contont| Pyl) + Bledtnld; &)
o Optimization problems
o i.e. we can approximate unknown functions
e We can beat professionals at Go!
o Probabilistic problems
o i.e. we can also approximate unknown distributions*

*definition abuse warning, see Silver et al.
(2016) for details
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How can we do “resource-efficient” Machine
Learning?

e Two ways to look at the problem:

o Algorithms
m Create smarter algorithms and use math tricks to reduce computations
o Systems

m Ensure that computations are efficient and minimize communication



Resource efficient algorithms
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o 1+2+3+..=7?
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Resource-efficient algorithms

e “Sum all numbers from 1 to 100”
o 1+2+3+..=7?
o 1+100=101, 2499=101, 3+98=101, ..., 50+51=101.
m 50x101=5050
o sum(1...n) =n(n+1)/2




Resource-efficient deep learning

e “Structured Transforms for Small-footprint Deep Learning”, Sindhwani et al.,
NIPS 2015



Resource-efficient deep learning

'Ok Google!




Resource-efficient deep learning

e Deep learning = Neural Networks (NN) = Matrix math (Linear algebra)
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Resource-efficient deep learning

Deep learning = Neural Networks (NN) = Matrix math (Linear algebra)
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Resource-efficient deep learning

e Structured matrices: Matrices whose elements exhibit a common structure,
e.g in a Toeplitz matrix each diagonal is constant:

i to t—(n—l)




Resource-efficient deep learning

e |dea: Represent NN matrices as combinations of Toeplitz matrices,
allowing us to do “superfast” linear algebra




Resource-efficient deep learning

e Results: Networks 80 times smaller than original, with ~99.8% of the
performance.

“Ok Google”
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o Websites for search
o Users for recommendations
o Proteins for disease study
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Resource-efficient similarity calculation

e Similarity between objects
o Websites for search
o Users for recommendations
o Proteins for disease study

e Generality: Model object and relations in a graph

e Problems

o Too many nodes and connections!
o Current approaches don't scale!
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Gornerup (2015)



Resource-efficient systems

e Idea: Don't calculate the similarity between Taylor Swift and Beethoven!

Gornerup (2015)



Resource-efficient systems

e Idea: Don't calculate the similarity between Taylor Swift and Beethoven!
e Allows us to tackle orders of magnitude larger graphs!

Gornerup (2015)
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Resource efficient systems



BID Data Toolkit

e Canny et al.: “Big Data Analytics with Small Footprint: Squaring the Cloud”,
KDD 2013

e Canny et al.: “BIDMach: Large-scale Learning with Zero Memory Allocation”,
NIPS 2013 BiglLearn workshop

BID DATA




- Roofline design establishes fundamental performance
limits for a computational kernel.
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Roofline design




- Dense matrix multiply €4
- Sparse matrix multiply @
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System Nodes/cores Dim  Error Time (s) Cost Energy (KJ)
Graphlab  18/576 100 376 $3.50 10,000
Spark 32/128 100 0.82 146 $0.40 1000
BIDMach 1 100 0.83 90 $0.015 20

Spark 32/128 200 082 544 $1.45 3500
BIDMach 1 200 0.83 129 $0.02 30
BIDMach 1 500 0.83 600 $0.10 150

Matrix factorization on the complete Netflix dataset



System nodes nclust Error Time (s) Cost Energy(KJ)
Icores

Spark 32/128 256 1.5e13 180 $0.45 1150

BIDMach 1 256 1.44e13 320 $0.06 90

Sk-Learn  1/8 256 3200x4 *  $1.0 10

Spark 96/384 4096 1.05e13 1100 $9.00 22000

BIDMach 1 4096 0.995e13 735 $0.12 140

Kmeans on MNIST-8M



Petuum

e Xing et al.: “Petuum: A New Platform for Distributed Machine Learning on
Big Data”, KDD 2015

e TUUM




Petuum

e Distributed machine learning
e Exploit common properties of ML algorithms to achieve efficient
implementation

e TUUM




LDA - Topic Model
MF - Matrix Factorization
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Petuum vs. state of the art (2015)




Takeaway

e Use smart systems and algorithms for large-scale ML
e Don't need a cluster to do most things



Challenges and research issues



Current issues

e Communication efficient algorithms and systems



Current issues

e Communication efficient algorithms and systems
e Resource efficient algorithms and systems
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Future issues

e Integrated systems and ML research: “Symbiotic” systems and algorithms
o How can we further take advantage of ML program properties to build better systems?

o How can we reconcile view of “ML people” and “systems people” to achieve progress on
both sides?
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Future issues

e “Symbiotic” systems and algorithms research
e Streaming/online learning
e Exascale ML



Thank You.


https://twitter.com/thvasilo
https://twitter.com/thvasilo
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