Resource-efficient Machine Learning

March 16th, 2016 Theodore Vasiloudis, SICS/KTH

• We can paint pictures!

Source: Champandard (2016)

- We can paint pictures!
- We can beat top-ranked players at Go!

lee se-dol leaves the match room bathed in camera flashes after historic defeat to deepmind theverge.com/2016/3/9/11184 ...

- We can paint pictures!
- We can beat professionals at Go!

We can paint pictures!

$$\mathcal{L}_{total}(\vec{p}, \vec{a}, \vec{x}) = \alpha \mathcal{L}_{content}(\vec{p}, \vec{x}) + \beta \mathcal{L}_{style}(\vec{a}, \vec{x})$$

- Optimization problems
- o i.e. we can approximate unknown functions

We can paint pictures!

$$\mathcal{L}_{total}(\vec{p}, \vec{a}, \vec{x}) = \alpha \mathcal{L}_{content}(\vec{p}, \vec{x}) + \beta \mathcal{L}_{style}(\vec{a}, \vec{x})$$

- Optimization problems
- o i.e. we can approximate unknown functions
- We can beat professionals at Go!
 - Probabilistic problems
 - i.e. we can also approximate unknown distributions*

*definition abuse warning, see Silver et al. (2016) for details

Two ways to look at the problem:

- Two ways to look at the problem:
 - Algorithms

- Two ways to look at the problem:
 - Algorithms
 - Create smarter algorithms and use math tricks to reduce computations

- Two ways to look at the problem:
 - Algorithms
 - Create smarter algorithms and use math tricks to reduce computations
 - Systems

- Two ways to look at the problem:
 - Algorithms
 - Create smarter algorithms and use math tricks to reduce computations
 - Systems
 - Ensure that computations are efficient and minimize communication

Resource efficient algorithms

Resource-efficient algorithms

"Sum all numbers from 1 to 100"

Resource-efficient algorithms

- "Sum all numbers from 1 to 100"
 - o 1 + 2 + 3 + ... = ?
 - o 1+100=101, 2+99=101, 3+98=101, ..., 50+51=101.
 - 50 × 101 = 5050

Resource-efficient algorithms

- "Sum all numbers from 1 to 100"
 - o 1 + 2 + 3 + ... = ?
 - o 1+100=101, 2+99=101, 3+98=101, ..., 50+51=101.
 - 50 × 101 = 5050
 - o sum(1...n) = n(n+1)/2

 "Structured Transforms for Small-footprint Deep Learning", Sindhwani et al., NIPS 2015

Deep learning = Neural Networks (NN) = Matrix math (Linear algebra)

Source: Karpathy

Deep learning = Neural Networks (NN) = Matrix math (Linear algebra)

Source: Dolhansky

Structured matrices: Matrices whose elements exhibit a common structure,
 e.g in a Toeplitz matrix each diagonal is constant:

 Idea: Represent NN matrices as combinations of Toeplitz matrices, allowing us to do "superfast" linear algebra

$$\begin{bmatrix} & \mathbf{t_0} & \mathbf{t_{-1}} & \dots & \mathbf{t_{-(n-1)}} \\ & \mathbf{t_1} & \mathbf{t_0} & \dots & & \vdots \\ & \vdots & \vdots & \vdots & \mathbf{t_{-1}} \\ & \mathbf{t_{n-1}} & \dots & \mathbf{t_1} & \mathbf{t_0} \end{bmatrix}$$

 Results: Networks 80 times smaller than original, with ~99.8% of the performance.

- Similarity between objects
 - Websites for search
 - Users for recommendations
 - Proteins for disease study

- Similarity between objects
 - Websites for search
 - Users for recommendations
 - Proteins for disease study
- Generality: Model object and relations in a graph

- Similarity between objects
 - Websites for search
 - Users for recommendations
 - Proteins for disease study
- Generality: Model object and relations in a graph
- Problems
 - Too many nodes and connections!
 - Current approaches don't scale!

Resource-efficient systems

• Idea: Don't calculate the similarity between Taylor Swift and Beethoven!

Resource-efficient systems

- Idea: Don't calculate the similarity between Taylor Swift and Beethoven!
- Allows us to tackle orders of magnitude larger graphs!

Resource efficient systems

BID Data Toolkit

- Canny et al.: "Big Data Analytics with Small Footprint: Squaring the Cloud",
 KDD 2013
- Canny et al.: "BIDMach: Large-scale Learning with Zero Memory Allocation",
 NIPS 2013 BigLearn workshop

 Roofline design establishes fundamental performance limits for a computational kernel.

- Dense matrix multiply
- Sparse matrix multiply

System	Nodes/cores	Dim	Error	Time (s)	Cost	Energy (KJ)
Graphlab	18/576	100		376	\$3.50	10,000
Spark	32/128	100	0.82	146	\$0.40	1000
BIDMach	1	100	0.83	90	\$0.015	20
Spark	32/128	200	0.82	544	\$1.45	3500
BIDMach	1	200	0.83	129	\$0.02	30
BIDMach	1	500	0.83	600	\$0.10	150

Matrix factorization on the complete Netflix dataset

System	nodes /cores	nclust	Error	Time (s)	Cost	Energy(KJ)
Spark	32/128	256	1.5e13	180	\$0.45	1150
BIDMach	1	256	1.44e13	320	\$0.06	90
Sk-Learn	1/8	256		3200x4 *	\$1.0	10
Spark	96/384	4096	1.05e13	1100	\$9.00	22000
BIDMach	1	4096	0.995e13	735	\$0.12	140

Kmeans on MNIST-8M

Petuum

 Xing et al.: "Petuum: A New Platform for Distributed Machine Learning on Big Data", KDD 2015

Petuum

- Distributed machine learning
- Exploit common properties of ML algorithms to achieve efficient implementation

Source: Xing (2015)

Takeaway

- Use smart systems and algorithms for large-scale ML
- Don't need a cluster to do most things

Challenges and research issues

Current issues

Communication efficient algorithms and systems

Current issues

- Communication efficient algorithms and systems
- Resource efficient algorithms and systems

Future issues

- Integrated systems and ML research: "Symbiotic" systems and algorithms
 - How can we further take advantage of ML program properties to build better systems?
 - O How can we reconcile view of "ML people" and "systems people" to achieve progress on both sides?

Future issues

- "Symbiotic" systems and algorithms research
- Streaming/online learning

Future issues

- "Symbiotic" systems and algorithms research
- Streaming/online learning
- Exascale ML

Thank You.

References

- Silver (2016): Mastering the game of Go with deep neural networks and tree search
- Karpathy: <u>CS231n Course material</u>
- Dolhansky: <u>Artificial Neural Networks Blog post series</u>
- Champandard (2016): <u>Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artwork</u>
- Görnerup (2015): <u>Knowing an Object by the Company it Keeps: A Domain-Agnostic Scheme for Similarity Discovery</u>
- BID Data Toolkit: BID Data Project Website
- CMU Petuum: <u>Petuum Project</u>

Other references found in the text.