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General Aspects of Automated Demand Response

Our Definition of Automated DR:

- Adirected influence on inherently flexible loads on the
customers’ premises triggered by externally or internally
computed signals.

Possible Objectives:

—> To shape the load curve in a desired way (e.g., peak shaving)

—> To trade portions of energy on the market (day-ahead, intra-day)
— To balance prediction errors

—> To deliver ancillary services from the demand side

—> To protect the local grid infrastructure
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General Aspects of Automated Demand Response

Our Definition of Automated DR:

- Adirected influence on inherently flexible loads on the
customers’ premises triggered by externally or internally
computed signals.

y = >
/ Aggregation and \ / \
coordinated centralized Decentralized optimization
control within a ,Virtual according to certain
Power Plant® incentive schemes: Variable
_ tariffs, self-consumption of
\_ Controlled Loads (TCLs) / \_ -/
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Coordination and Dispatch of TCLs

Project: Local Load Management (2008 — 2012)
Partners: FHNW, Alpiq, Landis+Gyr
Researcher: Stephan Koch

Funding: Swisselectric Research
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TCL Population

Coordination and Dispatch of TCLs

» Make aggregated thermostatically controlled
loads (TCLs) controllable (setpoint tracking)

switching | commands

(P, Setpoint ) Coordination
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W‘L-;\/\u 1 setpointS

control L
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» Integrate controllable loads with storage and
generation units to provide control services

Generation and Storage Units
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TCL Modeling Approach

» First-order differential equation for temperature dynamics of single TCL.:
Oitr1 = ailhic + (1 —a;)(0ai —mibsi) + Wiz

= Hysteretic thermostat controller produces characteristic cycling:

6 4 (cooling device)

Pel
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TCL Modeling Approach

» First-order differential equation for temperature dynamics of single TCL.:
Oitr1 = ailhic + (1 —a;)(0ai —mibsi) + Wiz

= Discretization of the temperature space into “bins”:
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TCL Modeling Approach

» First-order differential equation for temperature dynamics of single TCL.:
Oitr1 = ailhic + (1 —a;)(0ai —mibsi) + Wiz

= Discretization of the temperature space into “bins”:
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Control Strategy for TCL Setpoint Tracking

Simulation example: 1,000 air conditioning units

Temperature State Evolution for 200 TCLs (randomly chosen out of 1000)
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Integration into a Dispatch Framework

Coordinated Groups of TCLs can track a time-varying setpoint.

But where does the setpoint come from?

ldea: > Unify the modeling of load, storage, and generation units

—> Jointly optimize a flexible unit portfolio for a common goal
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Integration into a Dispatch Framework
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Integration into a Dispatch Framework
Dispatch with Model Predictive Control / ro— \
A N

= Joint predictive optimization ofa = == T
power node portfolio ”ﬂ/"""\f\ﬂ)
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Integration into a Dispatch Framework
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Import/Export of the portfolio
T

- Import from external source
- Expon to external smk

Time [days]
Import/Export of the portfolio
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' | I 'mport from external source
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Time [days]

= |n-feed of intermittent generation can
attain low values

—> lack of reliably available capacity

= |ncreasing the minimum in-feed by
dispatching flexible units accordingly:
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Integration into a Dlspatch Framework

= Residual load can exhibit high ramps
- high strain on conventional
generation assets
= Smoothing via dispatch of flexible units:
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General Aspects of Automated Demand Response

Our Definition of Automated DR:

- Adirected influence on inherently flexible loads on the
customers’ premises triggered by externally or internally
computed signals.

/ Aggregation and \ / \
coordinated centralized Decentralized optimization
control within a ,Virtual according to certain

Power Plant® incentive schemes: Variable
_ tariffs, self-consumption of
Mostly: Thermostatically generated electricity, ...
\_ Controlled Loads (TCLs) / \_ W,
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PV Self-Consumption Optimization

Project: SmartGrid-Polysun — Design Tool for Local Load Management
Funding: Federal Office of Energy, Swisselectric Research

Researcher: Project Partner:
* Evangelos Vrettos

PhD student A 1“ =8la
Power Systems Laboratory E U "'j} ::« ""f" ! |
& ETH Zurich AULATION

gy
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Modeling of a Residential Building
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pe—— ES
_1— —— -Q
HP VolumA sy a = | Hydronic system
Height: Ty m
BN == e | Inputs
[~ _l_,?_l_ S — , -
. —— Qutputs
Building
PV . Controller =
—] > = [0 oy [0
e hi
BEE 1~ Grid
... ~ L * UL
Battery _| 1O 71|
Stephan Koch 16 October 2013 18

EEH - Power Systems Laboratory



PV Self-Consumption Problem Setup

= Goals: (a) shift HP operation towards hours with high PV production
(b) charge battery when PV surpluses exist
(c) discharge battery to cover load in evening / at night

= Definitions: PV self-consumption ratio (), total electricity cost (E_.)

E J EPV —E >
(.f =_—BDid = Ecost = CPIT 'Eexp —Cel Emp
EPV EPV
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ML | E
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PV Self-Consumption Optimization

Base case (A0) Algorithm (A1) Algorithm (A2)

* HP operates based on
internal thermostat

* No battery

Smart HP operation HP operates based on
No battery internal thermostat

Battery is present

Tle.max
%2] Algorithm (A3) Algorithm (A4)

T s7.min

Height: 1.7 m

Smart HP operation
Battery is present
Priority to HP

Smart HP operation
Battery is present
Priority to battery

=
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PV Self-Consumption Optimization: Algorithm A3

YES HP within NO YES ‘1’ NO
. deadband _ Intermal  __ Pn>0
2 thermostat f ? _l
| NO v Battery Battery
i, HP OFF — charging discharging
—> PV power | |
enough?
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Simulation Results

PV UL HP Charge Discharge
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= Highest potential: in spring when both PV energy and heat demand are significant
= Charging priority: when Pp,>Px+P , the HP turns on
= HP limited potential: after a few hours the HP gets overheated and turns off
= Barrier for HP: temperature constraints of HP, rather than building thermal inertia

EEH - Power Systems Laboratory Stephan Koch 16 October 2013 22



Simulation Results
Yearly Simulation

Algorithm PV self-consumption (%) Electricity bill (€)

Base case (A0) 19.71 1248.63
smart HP (A1) 21.14 1249.24
Battery (A2) 35.19 1169.32
Both (A3) 36.46 1162.98
Both (A4) 35.49 1163.36

= HP only: limited potential for PV self-consumption, cost can increase due to losses

= Battery only: (a) high potential for PV self-consumption, and savings of ~79 € per year
(b) with current electricity tariffs, pays off only if battery cost < 60 €/kWh

= Both: priority to HP achieves highest self-consumption and savings of ~85 € per year

= HP saves additionally only ~6 € per year, but at virtually zero investment cost
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Development of a
Smart Distribution Grid
Simulator

Project: “Pioneer Fellowship® at ETH Zurich (PostDoc Employment)
Researcher: Stephan Koch
Funding: ETH Zurich

EEH - Power Systems Laboratory Stephan Koch 16 October 2013 24



The Challenge: Distribution Grid Operation (present)
— Transmission Grid (220/380 kV)

Coupling Substation
Substation =8 Substation

S
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» Passively operated $ 15 !E
distribution grids W— _oo\t
» Only small amounts
of Distributed W"

Generation L
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The Challenge: Distribution Grid Operation (present)
— Transmission Grid (220/380 kV)
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The Challenge: Distribution Grid Operation (future)
— Transmission Grid (220/380 kV)

Coupling Substation
Substation =8 Substation
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The Challenge: Distribution Grid Operation (future)

—— Transmission Grid (220/380 kV)
_ Coupling Substation
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— Transmission Grid (220/380 kV)

The Challenge: Distribution Grid Operation (future)

Coupling Substation

"6

Substation =

ﬁ Substation

Grid
Congestions! ﬁ
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Distribution Grid Challenges

/ = Keeping all voltages within permissible limits in all \
operational situations

» Avoiding component overloadings

» Being aware of the current grid condition and taking
\ correct countermeasures in case of disturbances /

!

Investments in even more copper and steel?
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Distribution Grid Challenges

/ = Keeping all voltages within permissible limits in all \
operational situations

» Avoiding component overloadings

» Being aware of the current grid condition and taking
\ correct countermeasures in case of disturbances /

!

The electricity grids need to become smarter.

|

This requires novel software tools.
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The Solution Approach

= Simulation of a smart distribution grid including the
representation of the new physical reality in the grid

= Novel analysis and planning methods

= |[nnovative operation and control strategies
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The Software DPG.sim — Basic Data Model

New Paradigm: Active Prosumers

Prosumer \

= Consumers can be producers at B e
the same time - Prosumers : i

= Prosumers can locally optimize D Cf::::; .
their interactions with the electricity - cmm._ |
grid e o] 1p e

= External aggregators can bring the .=~ e
pooled capacity of decentralized "™ e =
units to the market ok \_ | -

| Active & reactive power
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DPG.sim: Prosumer Dispersion on Grid Topology
— Transmission Grid (220/380 kV)

Coupling Substation

Substation =8 Substation

Substation
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DPG.sim: Simulation of Individual Units
— Transmission Grid (220/380 kV)

Coupling Substation

Substation =8 Substation

Substation |

»Time
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DPG.sim: Simulation of Individual Units
— Transmission Grid (220/380 kV)

Coupling Substation

Substation =8 Substation

Substation
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DPG.sim: Optimization and Control
— Transmission Grid (220/380 kV)

Coupling Substation
Substation =8 Substation

Optimization
and Control
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DPG.sim: Structure of the Simulation Tool

Distribution
Grid Model
Mathematical
Models Y
Prosumer Simulation Optimization
Objects Scenario and Control
Parameter
Sets, Time
Series

Time
Simulation

Result Analysis and
Decision Support
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DPG.sim: Exemplary Screenshots
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DPG Toolboxes and Exte

DPG.sim.Meter
DPG.field.dispatch SmartMeter DPG.sim.plan
Predictive Operational Measuremen Comparison
Optimization of Energy Data, Grid and Evaluation
Storage Devices, DR, Analysis of Smart &
Renewable Energy Conventional
Curtailment Grid

- Dynamic Decision Extensions

Support and Control JPG.sim.
enewables

Distribution DPG.field.load
Grids and Optimization of
Potential Ripple Control
Maps of Schedules

Renewable (Time Tables)
Energies
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Conclusions

/ \ / Local optimization and\

Aggregating DR control on the customers'
approaches represent an . .
premises can increase

important factor for .
self-consumption of

system flexibility in a
power system with high generated power and alter
the aggregate customers’

\renewable energy sharesj \_ behavior. -/
4

\

Both aggregating and local control
approaches have an impact on distribution
grids that needs to be properly managed.

\— _/
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Thank you for your attention!
Questions?




