

Automated Demand Response Strategies for Market Participation and Grid Management

Dr. Stephan Koch Power Systems Laboratory ETH Zurich, Switzerland

Outline

- General Aspects of Automated Demand Response
- Exemplary DR Strategies
 - Coordination & Dispatch of Thermostatically Controlled Loads (TCLs)
 - PV Self-Consumption Optimization
- Development of a Smart Distribution Grid Simulator
- Conclusions

General Aspects of Automated Demand Response

Our Definition of Automated DR:

→ A directed influence on inherently flexible loads on the customers' premises triggered by externally or internally computed signals.

Possible Objectives:

- \rightarrow To shape the load curve in a desired way (e.g., peak shaving)
- \rightarrow To trade portions of energy on the market (day-ahead, intra-day)
- \rightarrow To balance prediction errors
- \rightarrow To deliver ancillary services from the demand side
- \rightarrow To protect the local grid infrastructure

General Aspects of Automated Demand Response

Our Definition of Automated DR:

→ A directed influence on inherently flexible loads on the customers' premises triggered by externally or internally computed signals.

EEH – Power Systems Laboratory

Coordination and Dispatch of TCLs

Project: Local Load Management (2008 – 2012) Partners: FHNW, Alpiq, Landis+Gyr Researcher: Stephan Koch Funding: Swisselectric Research

Coordination and Dispatch of TCLs

 Make aggregated thermostatically controlled loads (TCLs) controllable (setpoint tracking)

Setpoint

Actual

 P_{agg}

TCL Modeling Approach

• First-order differential equation for temperature dynamics of single TCL:

$$\theta_{i,t+1} = a_i \theta_{i,t} + (1 - a_i)(\theta_{a,i} - m_{i,t} \theta_{g,i}) + \omega_{i,t}$$

Hysteretic thermostat controller produces characteristic cycling:

TCL Modeling Approach

• First-order differential equation for temperature dynamics of single TCL:

$$\theta_{i,t+1} = a_i \theta_{i,t} + (1 - a_i)(\theta_{a,i} - m_{i,t} \theta_{g,i}) + \omega_{i,t}$$

Discretization of the temperature space into "bins":

TCL Modeling Approach

• First-order differential equation for temperature dynamics of single TCL:

$$\theta_{i,t+1} = a_i \theta_{i,t} + (1 - a_i)(\theta_{a,i} - m_{i,t} \theta_{g,i}) + \omega_{i,t}$$

Discretization of the temperature space into "bins":

Control Strategy for TCL Setpoint Tracking

Simulation example: 1,000 air conditioning units

→ Storage characteristics

EHzürich

10

Integration into a Dispatch Framework

Coordinated Groups of TCLs can track a time-varying setpoint.

But where does the setpoint come from?

Idea: \rightarrow Unify the modeling of load, storage, and generation units \rightarrow Jointly optimize a flexible unit portfolio for a common goal

Integration into a Dispatch Framework

Integration into a Dispatch Framework

Dispatch with Model Predictive Control

- Joint predictive optimization of a power node portfolio
- Cost function and constraint design allows to cover a variety of use cases:
 - Least-cost dispatch
 - Market-based VPP operation
 - Balancing of schedule deviations
 - Provision of frequency control reserves
 - Capacity firming of intermittent generation
 - Peak shaving
 - Residual load ramp-rate reduction

Integration into a Dispatch Framework

EEH – Power Systems Laboratory

ETH zürich

Integration into a Dispatch Framework

 In-feed of intermittent generation can attain low values

 \rightarrow lack of reliably available capacity

 Increasing the minimum in-feed by dispatching flexible units accordingly:

$$J_k = \sum_{l=k}^{k+N_{\text{opt}}-1} J_{\text{endo}}^{\star}(l) - \pi_{\text{cap}} \cdot \min_{l \in [k,k+N_{\text{opt}}-1]} u_{\text{load}}^{\star}(l)$$

EEH – Power Systems Laboratory

Residual load can exhibit high ramps

- → high strain on conventional generation assets
- Smoothing via dispatch of flexible units:

$$J_k = \sum_{l=k}^{k+N_{\rm opt}-1} \pi_{\rm ramp}^{\rm slack} \frac{1}{t_s} \left(\delta u_{\rm load}^{\bigstar \rm slack}(l) \right)^2 + \sum_{l=k}^{k+N_{\rm opt}-1} J_{\rm endo}^{\bigstar}(l)$$

General Aspects of Automated Demand Response

Our Definition of Automated DR:

→ A directed influence on inherently flexible loads on the customers' premises triggered by externally or internally computed signals.

PV Self-Consumption Optimization

Project: SmartGrid-Polysun – Design Tool for Local Load Management Funding: Federal Office of Energy, Swisselectric Research

Researcher:

Evangelos Vrettos PhD student Power Systems Laboratory ETH Zurich

Modeling of a Residential Building

ETH zürich

PV Self-Consumption Problem Setup

- Goals: (a) shift HP operation towards hours with high PV production
 - (b) charge battery when PV surpluses exist
 - (c) discharge battery to cover load in evening / at night
- Definitions: PV self-consumption ratio (ξ), total electricity cost (E_{cost})

PV Self-Consumption Optimization

Base case (A0)	Algorithm (A1)	Algorithm (A2)
 HP operates based on internal thermostat No battery 	Smart HP operationNo battery	 HP operates based on internal thermostat Battery is present
T _{s10,max} Height 1.7 m	Algorithm (A3)	Algorithm (A4)
	 Smart HP operation Battery is present Priority to HP 	 Smart HP operation Battery is present Priority to battery
		· Frionty to ballery

PV Self-Consumption Optimization: Algorithm A3

EEH – Power Systems Laboratory

Simulation Results

- **Highest potential:** in spring when both PV energy and heat demand are significant
- **Charging priority:** when $P_{PV} > P_{HP} + P_{UL}$, the HP turns on
- **HP limited potential:** after a few hours the HP gets overheated and turns off
- Barrier for HP: temperature constraints of HP, rather than building thermal inertia

Simulation Results

Yearly Simulation

Algorithm	PV self-consumption (%)	Electricity bill (€)
Base case (A0)	19.71	1248.63
smart HP (A1)	21.14	1249.24
Battery (A2)	35.19	1169.32
Both (A3)	36.46	1162.98
Both (A4)	35.49	1163.36

- **HP only:** limited potential for PV self-consumption, cost can increase due to losses
- Battery only: (a) high potential for PV self-consumption, and savings of ~79 € per year
 (b) with current electricity tariffs, pays off only if battery cost < 60 €/kWh
- Both: priority to HP achieves highest self-consumption and savings of ~85 € per year
- HP saves additionally only ~6 € per year, but at virtually zero investment cost

Development of a Smart Distribution Grid Simulator

Project: "Pioneer Fellowship" at ETH Zurich (PostDoc Employment) Researcher: Stephan Koch Funding: ETH Zurich

The Challenge: Distribution Grid Operation (present)

The Challenge: Distribution Grid Operation (present)

The Challenge: Distribution Grid Operation (future)

The Challenge: Distribution Grid Operation (future)

28

The Challenge: Distribution Grid Operation (future)

29

Distribution Grid Challenges

- Keeping all voltages within permissible limits in all operational situations
- Avoiding component overloadings
- Being aware of the current grid condition and taking correct countermeasures in case of disturbances

Investments in even more copper and steel?

Distribution Grid Challenges

- Keeping all voltages within permissible limits in all operational situations
- Avoiding component overloadings
- Being aware of the current grid condition and taking correct countermeasures in case of disturbances

The electricity grids need to become smarter.

This requires novel software tools.

The Solution Approach

- Simulation of a *smart* distribution grid including the representation of the new physical reality in the grid
- Novel analysis and planning methods
- Innovative operation and control strategies

The Software DPG.sim – Basic Data Model

New Paradigm: Active Prosumers

- Consumers can be producers at the same time → Prosumers
- Prosumers can locally optimize their interactions with the electricity grid
- External aggregators can bring the pooled capacity of decentralized units to the market

DPG.sim: Prosumer Dispersion on Grid Topology

DPG.sim: Simulation of Individual Units

DPG.sim: Simulation of Individual Units

DPG.sim: Optimization and Control

DPG.sim: Structure of the Simulation Tool

DPG.sim: Exemplary Screenshots

EEH – Power Systems Laboratory

EHzürich

DPG Toolboxes and Extensions

Conclusions

Aggregating DR approaches represent an important factor for system flexibility in a power system with high renewable energy shares. Local optimization and control on the customers' premises can increase self-consumption of generated power and alter the aggregate customers' behavior.

Both aggregating and local control approaches have an impact on distribution grids that needs to be properly managed.

Thank you for your attention! Questions?