
EEH – Power Systems Laboratory 

Dr. Stephan Koch 
Power Systems Laboratory 
ETH Zurich, Switzerland 

1 

Automated Demand Response Strategies for 
Market Participation and Grid Management 

Stephan Koch 16 October 2013 



EEH – Power Systems Laboratory 

§  General Aspects of Automated Demand Response 

§  Exemplary DR Strategies 
§ Coordination & Dispatch of Thermostatically Controlled Loads (TCLs) 

§ PV Self-Consumption Optimization 

§  Development of a Smart Distribution Grid Simulator  

§  Conclusions 
 

2 

Outline 

Stephan Koch 16 October 2013 



EEH – Power Systems Laboratory 3 

General Aspects of Automated Demand Response 

Stephan Koch 16 October 2013 

Our Definition of Automated DR: 
à A directed influence on inherently flexible loads on the 

customers‘ premises triggered by externally or internally 
computed signals. 

 
Possible Objectives: 
à To shape the load curve in a desired way (e.g., peak shaving) 
à To trade portions of energy on the market (day-ahead, intra-day) 
à To balance prediction errors 
à To deliver ancillary services from the demand side 
à To protect the local grid infrastructure 
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General Aspects of Automated Demand Response 

Stephan Koch 16 October 2013 

Our Definition of Automated DR: 
à A directed influence on inherently flexible loads on the 

customers‘ premises triggered by externally or internally 
computed signals. 

 

Aggregation and 
coordinated centralized 
control within a „Virtual 

Power Plant“ 
 

Mostly: Thermostatically 
Controlled Loads (TCLs) 

Decentralized optimization 
according to certain 

incentive schemes: Variable 
tariffs, self-consumption of 

generated electricity, … 
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Coordination and Dispatch of TCLs 

Stephan Koch 16 October 2013 

Project: Local Load Management (2008 – 2012) 
Partners: FHNW, Alpiq, Landis+Gyr 
Researcher: Stephan Koch 
Funding: Swisselectric Research 
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Coordination and Dispatch of TCLs 

Stephan Koch 16 October 2013 

§  Make aggregated thermostatically controlled 
loads (TCLs) controllable (setpoint tracking) 

§  Integrate controllable loads with storage and 
generation units to provide control services 
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TCL Modeling Approach 

Stephan Koch 16 October 2013 

§  First-order differential equation for temperature dynamics of single TCL: 

§  Hysteretic thermostat controller produces characteristic cycling: 
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§  First-order differential equation for temperature dynamics of single TCL: 

§  Discretization of the temperature space into “bins”: 
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TCL Modeling Approach 
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§  First-order differential equation for temperature dynamics of single TCL: 

§  Discretization of the temperature space into “bins”: 
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Control Strategy for TCL Setpoint Tracking 

Stephan Koch 16 October 2013 

Simulation example: 1,000 air conditioning units 

Power 

Energy 

à Storage characteristics 
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Integration into a Dispatch Framework 

Stephan Koch 16 October 2013 

Coordinated Groups of TCLs can track a time-varying setpoint. 
 

But where does the setpoint come from? 
 
 
 

Idea:  à Unify the modeling of load, storage, and generation units 
  

 à Jointly optimize a flexible unit portfolio for a common goal 
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Integration into a Dispatch Framework 

Stephan Koch 16 October 2013 

The Power Nodes 
Modeling Framework 
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Integration into a Dispatch Framework 

Stephan Koch 16 October 2013 
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Dispatch with Model Predictive Control 

§  Joint predictive optimization of a 
power node portfolio 

§  Cost function and constraint design 
allows to cover a variety of use 
cases: 
§  Least-cost dispatch 
§  Market-based VPP operation 
§  Balancing of schedule deviations 
§  Provision of frequency control 

reserves 
§  Capacity firming of intermittent 

generation 
§  Peak shaving 
§  Residual load ramp-rate reduction 
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Integration into a Dispatch Framework 

Stephan Koch 16 October 2013 

d 
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§  Residual load can exhibit high ramps 
 à  high strain on conventional    
  generation assets 

§  Smoothing via dispatch of flexible units: 

§  In-feed of intermittent generation can 
attain low values 
 à lack of reliably available capacity 

§  Increasing the minimum in-feed by 
dispatching flexible units accordingly: 

 
 
 

* * 

* * 

Integration into a Dispatch Framework 
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General Aspects of Automated Demand Response 

Stephan Koch 16 October 2013 

Our Definition of Automated DR: 
à A directed influence on inherently flexible loads on the 

customers‘ premises triggered by externally or internally 
computed signals. 

Decentralized optimization 
according to certain 

incentive schemes: Variable 
tariffs, self-consumption of 

generated electricity, … 

Aggregation and 
coordinated centralized 
control within a „Virtual 

Power Plant“ 
 

Mostly: Thermostatically 
Controlled Loads (TCLs) 
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PV Self-Consumption Optimization 

Stephan Koch 16 October 2013 

Researcher:                                            Project Partner: 
 Evangelos Vrettos 
 PhD student 
 Power Systems Laboratory 
 ETH Zurich 

Project: SmartGrid-Polysun – Design Tool for Local Load Management 
Funding: Federal Office of Energy, Swisselectric Research 
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Modeling of a Residential Building 

Stephan Koch 16 October 2013 
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PV Self-Consumption Problem Setup 

Stephan Koch 16 October 2013 

§  Goals: (a) shift HP operation towards hours with high PV production   
                  (b) charge battery when PV surpluses exist   
        (c) discharge battery to cover load in evening / at night 

§  Definitions:   PV self-consumption ratio (ξ),     total electricity cost (Ecost) 
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PV Self-Consumption Optimization 

Stephan Koch 16 October 2013 

Base case (A0) 

•  HP operates based on 
internal thermostat 

•  No battery 

Algorithm (A1) 

•  Smart HP operation 
•  No battery 

Algorithm (A2) 

•  HP operates based on 
internal thermostat 

•  Battery is present 

Algorithm (A3) 

•  Smart HP operation 
•  Battery is present 
•  Priority to HP 

Algorithm (A4) 

•  Smart HP operation 
•  Battery is present 
•  Priority to battery 
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PV Self-Consumption Optimization: Algorithm A3 

Stephan Koch 16 October 2013 
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Simulation Results 

Stephan Koch 16 October 2013 

§  Highest potential: in spring when both PV energy and heat demand are significant 
§  Charging priority: when PPV>PHP+PUL, the HP turns on 
§  HP limited potential: after a few hours the HP gets overheated and turns off 
§  Barrier for HP: temperature constraints of HP, rather than building thermal inertia 

HP temperature 
constraint 
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Simulation Results 

Stephan Koch 16 October 2013 

Algorithm PV self-consumption (%) Electricity bill (€) 
Base case (A0) 19.71 1248.63 
smart HP (A1) 21.14 1249.24 
Battery (A2) 35.19 1169.32 
Both (A3) 36.46 1162.98 
Both (A4) 35.49 1163.36 

§  HP only: limited potential for PV self-consumption, cost can increase due to losses 
§  Battery only: (a) high potential for PV self-consumption, and savings of ~79 € per year 

              (b) with current electricity tariffs, pays off only if battery cost < 60 €/kWh 
§  Both: priority to HP achieves highest self-consumption and savings of ~85 € per year 
§  HP saves additionally only ~6 € per year, but at virtually zero investment cost 

Yearly Simulation 
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Development of a                                              
Smart Distribution Grid  

Simulator 

Project: “Pioneer Fellowship“ at ETH Zurich (PostDoc Employment) 
Researcher: Stephan Koch 
Funding: ETH Zurich 
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The Challenge: Distribution Grid Operation (present) 

Substation Substation 

Substation 
G

Coupling Substation 
Transmission Grid (220/380 kV) 

G

§ Passively operated 
distribution grids 

§ Only small amounts 
of Distributed 
Generation 
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G G

§ Possibility to influence 
certain loads by Ripple 
Control equipment  

Substation Substation 

Substation 

Transmission Grid (220/380 kV) 

§ Passively operated 
distribution grids 

§ Only small amounts 
of Distributed 
Generation 

Coupling Substation 

The Challenge: Distribution Grid Operation (present) 
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The Challenge: Distribution Grid Operation (future) 

G G

External 
Aggregator 

Substation Substation 

Substation 

Transmission Grid (220/380 kV) 
Coupling Substation 
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The Challenge: Distribution Grid Operation (future) 

G G

External 
Aggregator 

Substation Substation 

Substation 

Transmission Grid (220/380 kV) 
Coupling Substation 
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The Challenge: Distribution Grid Operation (future) 

G G

External 
Aggregator 

Substation Substation 
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Transmission Grid (220/380 kV) 
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Congestions! 
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Distribution Grid Challenges 

Investments in even more copper and steel? 

§  Keeping all voltages within permissible limits in all 
operational situations 

§  Avoiding component overloadings 

§  Being aware of the current grid condition and taking 
correct countermeasures in case of disturbances 
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Distribution Grid Challenges 

The electricity grids need to become smarter. 

This requires novel software tools. 

§  Keeping all voltages within permissible limits in all 
operational situations 

§  Avoiding component overloadings 

§  Being aware of the current grid condition and taking 
correct countermeasures in case of disturbances 
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The Solution Approach 

§  Simulation of a smart distribution grid including the 
representation of the new physical reality in the grid 

§  Novel analysis and planning methods 

§  Innovative operation and control strategies 
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The Software DPG.sim – Basic Data Model 
New Paradigm: Active Prosumers  
 
§  Consumers can be producers at 

the same time à Prosumers 
§  Prosumers can locally optimize 

their interactions with the electricity 
grid 

§  External aggregators can bring the 
pooled capacity of decentralized     
units to the market 
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DPG.sim: Prosumer Dispersion on Grid Topology 
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DPG.sim: Simulation of Individual Units 
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DPG.sim: Simulation of Individual Units 
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DPG.sim: Optimization and Control 

Substation Substation 

Substation 

Transmission Grid (220/380 kV) 

G G

Optimization 
and Control 

Coupling Substation 



EEH – Power Systems Laboratory 38 Stephan Koch 16 October 2013 

DPG.sim: Structure of the Simulation Tool 
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DPG.sim: Exemplary Screenshots 

functional prototype 
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DPG 

 
DPG.sim.Meter 
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Data, Grid 
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Conclusions 

Aggregating DR 
approaches represent an 

important factor for 
system flexibility in a 

power system with high 
renewable energy shares. 

Both aggregating and local control 
approaches have an impact on distribution 
grids that needs to be properly managed. 

Local optimization and 
control on the customers‘ 

premises can increase 
self-consumption of 

generated power and alter 
the aggregate customers‘ 

behavior. 



Thank you for your attention! 
Questions? 


