

Demand Response Services Integrating Renewables and enabling Flexibility of Households and Buildings

Matthias Stifter, AIT René Kamphuis, TNO

Contents

- Challenges and Opportunities
- DR Resources and Potentials
- Market integration of Demand Flexibility
- Pilot projects, demonstration and case studies
- Conclusion and Outlook

CHALLENGES AND OPPORTUNITIES

Definitions

Demand Side Management

• " ... encourages consumers to modify patterns of energy usage, including the timing and level of electricity demand. Demand side management includes demand response and demand reduction." [SGTF-EG3]

Demand Reponse

 "DR can be defined as a change in the consumption pattern of electricity consumers in response to a signal (e.g. changes of electricity price) or due to incentives for increase of energy efficiency or fulfilling certain objectives (e.g. reliability of supply)" [EC, DoE]

Flexibility

 "Flexibility is intrinsically linked to a number of key terms or concepts and encompasses, Demand Side Response, Demand Management, Flexible Generation and Energy Storage on the supply and demand side." [SGTF-EG3]

Categorization of Demand Response

Categorizations

- Incentive based
- Price based

- Commercial & Industry
- Residential

Source: S3C - Report on state-of-the-art and theoretical framework for enduser behaviour and market roles

Challenges and Opportunities

- Electrification of energy delivery

 higher demand peaks
 - Electrical vehicles, HVAC (Air Conditioner, Heat Pump)
- Distributed generation -> higher dynamic in the network
 - wind turbines, combined heat and power (CHP), photovoltaic systems (PV)
- Heterogeneous: hotspots -> local congestions
 - No: one-size fits all and fit-and-forget principles anymore
- **Legislation** and **regulation** → solve problem where it arises
 - Optimized for operation and transactions from large generators and averaged, profiled demands

Power flows in electricity grids

central → distributed generation unidirectional → bidirectional power flow

Source: Leonardo ENERGY - Smart grid: A grid suitable for renewable energy

Increase of Volatility and need for Balancing

PV generation on a cloudy day

 Wind generation and deviation from forecast

need for balancing

Increase in Demand: EV Opportunity Charging

Increase in Demand: EV Opportunity Charging

DR RESOURCES AND POTENTIALS

DR Resources in Residential Areas

- Fully static consumption (also PV and wind)
- Static amount, flexible timing of consumption (behavioral)
- Flexible amount, static timing (controllable load and generation)
- Fully dynamic consumption

Source: Ch. M. Flath Flexible Demand in Smart Grids Modeling and Coordination

DR Resources in Residential Areas

Electro-thermal storage

- Warm water boilers
- Cooling / freezers
- Heating (HVAC) / Heatpumps ("Smart Grid Ready")

Electric storage

- Electric vehicles (controlled charging)
- Stationary batteries, home battery systems

Other Shiftable Processes

- Public services: Water pumps, Waste water / sewage
- → Load shifting for network operation is already in place for many years (ripple control)
- → Aggregation makes it more robust (Virtual Power Plant)

Example for DR Resource and Business Case

- Shifting water heating to optimize with volatile generation
- No customer impact, preserve comfort
- Pooling of "very small units"
- Boiler prepared and can be upgraded with GPRS connectivity
- System control and permanent monitoring (status of storage)
- New market player deals with data, security, customer involvement

Theoretical DR Potential in Europe

35000

MW

Potential load reduction

Average potential load increase

Source: Hans Christian Gils, Assessment of the theoretical demand response potential in Europe, Energy, Volume 67, 2014, 1–18

Practical Potential (example Germany and Austria)

- Practical load shift demand at households in Germany and Austria
- depends on duration
- rebound effect for "re-charging"

Source: Load shifting potentials in Germany B.A.U.M. Consult – own illustration

Source: Energy Institute JKU Linz – Project "LoadShift"

DR Motivation, Applications and Services

- Reduce peak demand power
- Provide balancing services
- Portfolio optimization
- Integration of renewables
- Avoid network congestion
- Market participation (better energy prices)
- Optimization of self-consumption
 - Germany: Grid Parity / 70% curtailment

Challenges and Opportunities

- Increase in information systems used in energy grids
 - Confusion what are smart grids
 - However: more –smartly integrated- applications can be built
 - Smart metering, home SES and monitoring including LV level
 - Communication/message exchange possible between load and generation on all levels
- Aggregation of loads to deliver services
 - Virtual power plants
 - Commercial clusters ->supporting market parties
 - Technical clusters -> supporting DNO, TNO becoming DSOs, TSOs
 - Community based
 - Community batteries with own clusters of customers (storing PV)

Task 17 Overview: Systems view on enabling Demand Response and DG-RES

- Different views on the Smart Grid:
 - Technology
 - Customer
 - Policy
 - Market
- Enabling of flexibility
 Impact of it on the stakeholders:
 - What are the requirements?
 - How do we manage it?
 - How will it effect operation?
 - What are the benefits?

Systems view on enabling DR and DG-RES

- Behaviour based DR: passive; incentivised by tariff (e.g.: example red-white blue in
 - France; washing on PV)
 - Utility centered (e.g. congestion management)
 - Low ICT requirements
- Active DR: active; incentivised by micro-profiling and micro-pricing by service provider (smart meter allocation in Finland, system Germany; your energy moment)
 - Service oriented (grid and market)
 - Intermediate ICT requirements

- Transactional DR: bidding based; incentivised by direct market access (PowerMatcher, Transactional Energy, Intelligator)
 - Prosumer/SmartCity oriented
 - Multi-commodity (kW, kWh_e, kWh_{th})
 - Variable time resolution
 - High ICT requirements

Pilots, Demonstration and Case Studies

SGMS-HiT -Smart Grid Modelregion Salzburg

Buildings as interactive participants in the Smart Grids

SGMS-HiT – DR Resources

- Utilizing HVAC-Systems (heating, hot water)
- Separate usage of energy from energy supply
 - → **Buffering** with thermal storages
- Use energy which is most efficient for the grid
 - Biogas (CHP)
 - PV
 - Grid
 - District heating

- →grid friendly building
- → Comfort must be preserved.

SGMS-HiT - Consumer Participation

Consumer Evaluation

• FORE-Watch: 12 hours forecast

• (simulated) Tariffs

RED: Standard Tariff + 5 Cent / kWh

YELLOW: Standard Tariff

GREEN: Standard Tariff – 5 Cent / kWh

SGMS-HiT - Consumer Evaluation

Usage of Smart Center

- Energy consumption
 - EcoButton is used
 - Dish washer shiftable
 - Cooking not shiftable
 - Comfort for consumption

Activity only triggered by external events

Energy savings through information campaign.

SGMS-HiT – Evaluation of automated DR

Potentials of automated load shifting:

Heat source	Red	Yellow	Green
СНР	+17 %	-11 %	-6 %
НР	-12 %	+9 %	+3 %

Cost savings

Blue: Normal operation

Green: Normal + CO2 optimized

next 12 hours

Yellow: Smart Grid – cost optimized

Project: gridSMART® RTPda Demo

Residential Real-time Pricing Experience

gridSMART® RTP - Background

 First real-time market at distribution feeder level with a tariff approved by the PUC of Ohio

- Value streams
 - Energy purchase benefit: function of PJM market LMP
 - Capacity benefits: distribution feeder and system gen/trans limitations, e.g., peak shaving
 - Ancillary services benefits: characterized, but not part of the tariff
- Uses market bidding mechanism to perform distributed optimization transactive energy
 - ~200 homes bidding on 4 feeders
 - Separate market run on each feeder
 - "Double auction" with 5 minute clearing
- HVAC automated bidding
 - Smart thermostat and home energy manager
 - Homeowner sets comfort/economy preference
 - Can view real-time and historical prices to make personal choices

gridSMART® RTP - Transactive Grid Control Overview

1. Automated, price-responsive device controls express customer's flexibility (based on current needs)

4. Aggregator Refrigerator determines price at Load ' 2. Customer which grid **Water Heater** system objective achieved, Price (\$/kWh) aggregates broadcasts to **Air Conditioner** responses to consumers Load form overall (kW) price flexibility Price curve → (\$/kWh) **Customer Price-Flexibility Curve* Price-Discovery Mechanism** Load (kW) **Supply Limit** Aggregate Demand Max Curve Load 3. Utility (all customers) Load ← Charge battery * Labels removed (kW) before sending to aggregates ←Water heater **Q**_{capacity} curves Base from all Load Discharge battery Price Price customers → (\$/kWh) (\$/kWh)

Pclear

gridSMART® RTP in Action

Power Matcher

Power Matcher

Power Matcher

Example of PowerMatcher Agent VPP-Topology

PowerMatcher roles

- Software Agent: Expresses bids to its matcher based on flexibility in the primary process in electricity supply / demand it represents
- Matcher: determines price for its agents based on the supply and demand bids.

- Any agent is associated to exactly one matcher (normally)
- Any number of agents may be associated with one matcher

Priority is translated into a price dependent on the current state of the primary process

Economics of DR mechanisms on the market

Commercial aggregation of the 25 household cluster

Pre-emptive charging of heat buffers

Conclusions and Outlook

High DG-RES percentages require flexible demand

New Roles: Aggregator

- Provides access to market/network for small resource (pooling)
- Directive EE:
 - "a demand service provider that combines multiple short duration consumer loads for sale and autciton in organized energy markets"
- Necessity to include small generation
- Avoid discrimination between generation and active demand resources

High DG-RES percentages require flexible demand

New Roles: Flexibility Service Provider

- Motivation
 - Other services as system balancing
 - Services between other actors than TSO
- Definition of flexibility
 - Does it include energy?
 - Does it inlcude power able to be activated?
- Definition should include all resources
 - Regardless the connected grid (TSO / DSO)
 - Aggregated or not aggregated

Possible relations between market roles

SGEG3 – Regulatory Recommendations for the Deployment of Flexibility

Flexibility is needed SEDC: Smart Energy Demand Coalition

Customer Data Management to enable Flexibility

- DataHub for enabling new business models and services
 - Virtual Power Plants / Aggregator
 - Flexibility Operators / Demand Response
 - ESCO / Energy efficiency
 - Smart Homes

Business cases and end user interaction

- Most field tests show increase in flexibility can be shown
 - Optimization of energy use decrease costs and increases comfort
- In current tariff and market situation not optimal
 - Definition of responsibilities and new roles necessary
- Incentives to end-users needs to be clear
 - Flexibility in end-user processes is there; retain energy efficiency
 - Enduring effects -> preference learning and automation
- User behaviour and interaction possibilities need to be clear
 - Changes in control strategies have impact on performance

Questions

AIT Austrian Institute of Technology	TNO Netherlands organization for science and technology
Matthias Stifter	René Kamphuis
Energy Department Electric Energy Systems	Energy efficiency program Service enabling and management
Giefinggasse 2 1210 Vienna Austria T +43(0) 50550-6673 M +43(0) 664 81 57 944 F +43(0) 50550-6613 matthias.stifter@ait.ac.at http://www.ait.ac.at	Eemsgolaan 3, 9727 DW Groningen T +31 (0) 621134424 PO Box 1416 9701 BK Groningen The Netherlands rene.kamphuis@tno.nl www.tno.nl

References

- IEA DSM Task 17 www.ieadsm.org
- SEDC Smart Energy Demand Coalition
 - http://www.sedc-coalition.eu/
- 2013: Clip Darmstadt
 - https://www.web2energy.com/news-downloads/web2energy-movie/
- European Commission
 - https://ec.europa.eu/energy/en/topics/markets-and-consumers
 - Smart Grid Mandate M/490

