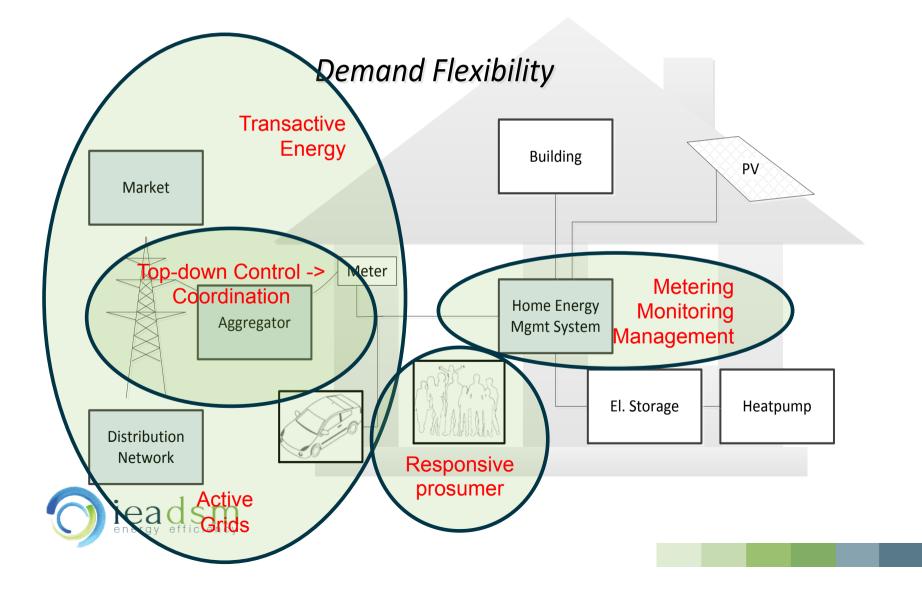


IEA DSM Task 17 Phase 4: Responsive Prosumer Networks ExCo Meeting Bergen 17 April 2018

René Kamphuis, TNO and TU Eindhoven Anna Kosek, TNO



Task 17: Integration of Demand Side Management, Energy Efficiency, Distributed Generation and Renewable Energy Sources (previous phases)

- Phase 1 (VTT: 2008-2010): Information collection on technologies and analysis
- Phase 2 (VTT: 2011-2013): Projects inventory, qualitative analysis and maturity assessment
- Phase 3 (AIT/TNO 2014-2016): Potentials, business models and quantitative analysis (US, Copper Alliance, S, CH, A, NL)

Overview: Deployment view : one step further

Phase 4; Demand Side <u>Management</u> → <u>Integration</u>

ENERGY TRANSITION

- Metering
- Control
- Passive
- Tariffed

- \rightarrow Monitoring
- \rightarrow Coordination
- \rightarrow Active grids
- \rightarrow Microtransactions

- \rightarrow Context awareness
- \rightarrow Participation
- \rightarrow Pre-emptive grids
 - \rightarrow Transactive Energy, P2P

Responsiveness via incentives

ENERGY TRANSITION

- Metering
- Control
- Passive
- Fixed Tariffs

- \rightarrow Monitoring
- \rightarrow Coordination
- \rightarrow Active
- \rightarrow Flexible tariffs

- \rightarrow Inform, analyse and verify
- → Emergent behaviour
- \rightarrow Larger flexibility potential
- → Incentive v punishment, smart P2P contracts

Prosumer

ENERGY TRANSITION

 \rightarrow

 \rightarrow

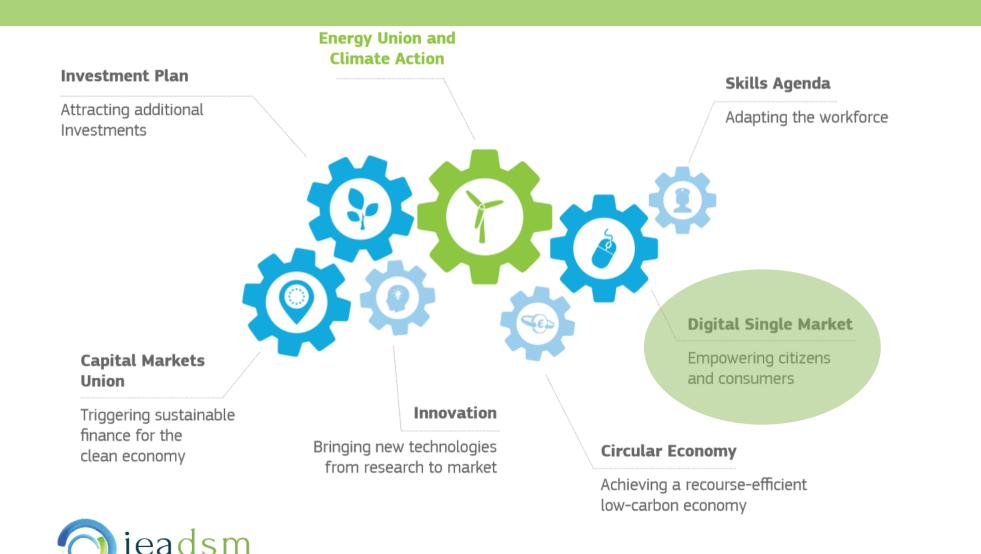
Passive

- Monthly/yearly energy demand
- Manual control
- Economical
- On demand consumption
- HEMS Internal optimization

- Active
- Demand per hour/minute
- \rightarrow Home automation and remote control
- \rightarrow Environmentally friendly
- \rightarrow Sustainability and self-consumption
- → Smart Communities/ Smart Cities

Networks

ENERGY TRANSITION


- Operation mode:
- Investments:
- Tariffs
- Monitoring

Top-down Asset driven (30+ y) Capacity (max. kW/y) Primary substation

- \rightarrow More bottom-up
- \rightarrow Risk driven (10-15 y)
- \rightarrow Real time (kW(t))
- \rightarrow Secondary substation

Subtask 14: Context EU winter package

Subtask 14: Context EU winter package 2016

Some consumers – as individuals or in cooperatives – already generate renewable electricity self-consuming

We want to break those barriers by making the whole system less burdensome, more flexible and more responsive to the way consumers produce and consume.

It is central that consumers can trust the energy policies and services. We want to increase transparency in the energy costs and prices. The current situation wherewholesale prices for electricity and gas are close

- A level - the second - the se

A ALL STOLEN AND A

bill or deal with a problem. We want to change this. With our proposals **Europeans will have better access** to smart meters and clear bills, and will be better able to switch energy provider. We want Europeans to have better information, more possibilities to engage in the energy market and to be more in control of their energy costs.

Subtasks

- Subtask 14:
 - Context analysis, use cases and Smart City pilots positioning
- Subtask 15:
 - Metering, monitoring and coordination methods required to increase prosumer responsiveness
- Subtask 16:
 - Coupling to innovative user feedback, billing and transactive(P2P) contract schemes
- Subtask 17:
 - Conclusions and Recommendations

Subtask 14 : Context analysis, use cases and Smart City Pilots

- Energy transition
 - electricity: commodity, dissatisfier -> asset, gadget, part of life style
- Digitalization
 - Information available anywhere, anytime
 - Big data, liked data
 - Software or hardware cost no longer major issue
- Value creation
 - Mapping roles and responsibilities
 - Value flows
- Analyze the end-user behavioral characteristics and their relation to system operation. Classify and analyze behavioral changes that occur with customer energy transition, observed via metering and interviews.
- Analyze and refine the role and level of aggregator and aggregation in common use cases
- Critical success factors for smart city projects
- Bottlenecks in upscaling successful pilots
 - Increase technology readiness levels

Subtask 15 : Metering, monitoring and coordination methods required to increase prosumer responsiveness

- Develop view on how to come to a better mapping of commercial tariffs on DR and DG customer behavior
- How do prosumer assets (including storage) become available for other actors (e.g. aggregators)
- Make inventory on current and future distribution grid asset management, operation modes and associated tariff scheme components
- Develop view on possible new tax and subsidy schemes
- Assess the relation to already existing and future automated control schemes

Subtask 16 :Coupling to innovative user feedback, billing and transactive energy schemes

- Make an inventory of existing feedback, reconciliation and billing systems for electricity
- Assess a number of pilots, that have been implemented with alternative approaches:
 - Transactive energy
 - P2P
- Develop common view on feedback (50% kWh/50 flex) and billing innovation (e.g. Ethereum/smart contracts)
- Analyze the influence of instant feedback and microtransactions on user behavior and responsiveness

Subtask 17 : Conclusions and Recommendations

Lessons learned

Collaborations

- IEEE, IEC and CENELEC standards committees
- ISGAN (SmartGrids)
 - Several annexes
- National stakeholder groups
 - NL/TKI Urban energy
- EERA/SmartGrids
- DERLabs HESI-facility
- IEA/TCP
 - ECES (Storage)
 - HPT (Heat pumps)
 - PVPS (photovoltaic)

Organization

IEA-DSM TASK 17 - Phase 4	Q3 18	Q4 18	Q1 19	Q2 19	Q3 19	Q4 19	Q1 20	Q2 19
Subtasks								
Subtask 14 - Context								
Subtask 15 - Metering, monitoring and billing								
Subtask 16- Billing and transactive								
Subtaks 17 - Conclusion and recommendations								
Expert meetings								
Biannual country expert meeting								
Workshops								
Workshops with stakeholders and experts								
Reports								
Subtasks reports								
Final report								

Deliverables

- IEA-DSM-17.4.14: "Context analysis, flexibility aggregation and Smart City initiatives"
- IEA-DSM-17.4.15: "Metering, monitoring and coordination methods required to increase prosumer responsiveness"
- IEA-DSM-17.4.16: "Innovative user feedback, billing and transaction schemes"
- IEA-DSM-17.4.17: "Conclusions and recommendations realizing responsive prosumer networks"

Financial

- Dependent upon the number of participating countries (>4); 32-24k€
- In kind country expert contribution 200-300 hrs over 2 years

Questions

TNO Netherlands organization for science and technology

René Kamphuis, Anna Kosek

Energy efficiency program Monitoring and control systems

Eemsgolaan 3, 9727 DW Groningen T +31 (0) 621134424 PO Box 1416 9701 BK Groningen The Netherlands rene.kamphuis@tno.nl www.tno.nl

