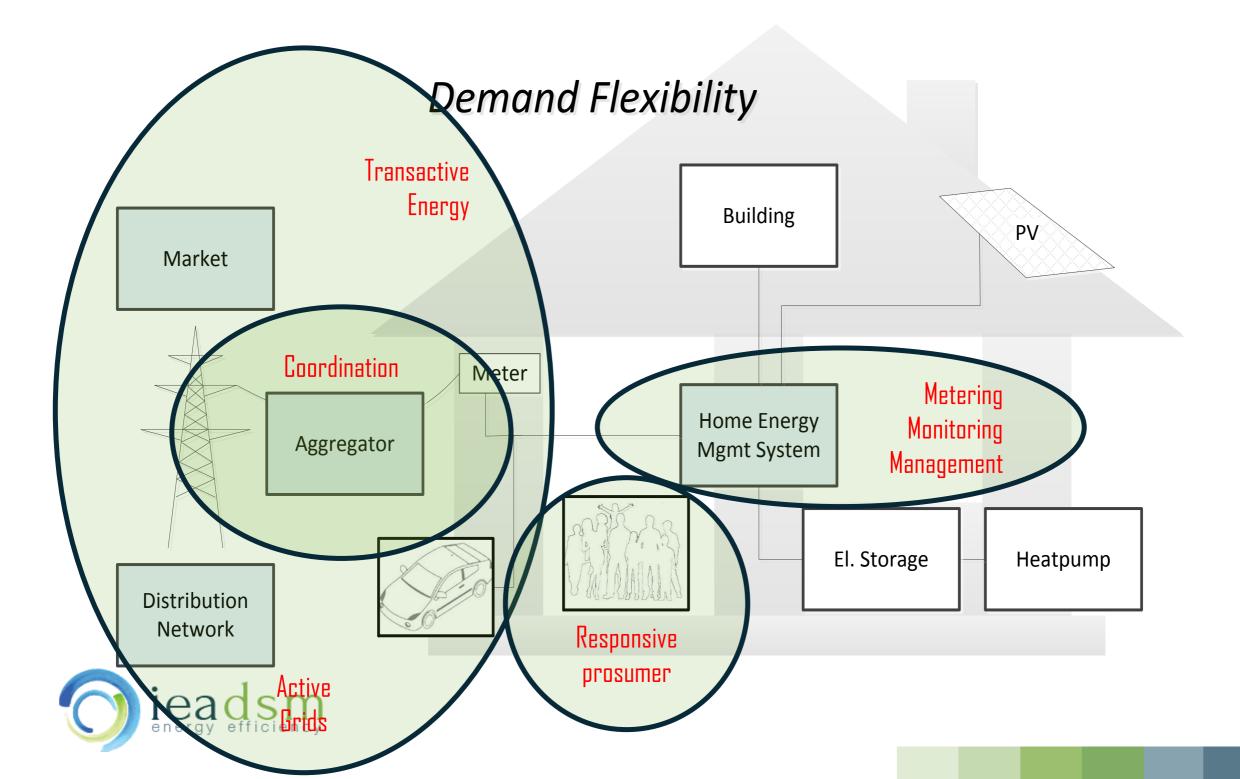


IEA DSM Task 17 Phase 4: Responsive Prosumer Networks

Workshop IEA DSM Task 17: Responsive consumers and value of flexibility 23 May, Brussels

Anna Kosek, TND



Task 17: Integration of Demand Side Management, Energy Efficiency, Distributed Generation and Renewable Energy Sources (previous phases)

- Phase 1 (VTT: 2008-2010): Information collection on technologies and analysis
- Phase 2 (VTT: 2011-2013): Projects inventory, qualitative analysis and maturity assessment
- Phase 3 (AIT/TNO 2014-2016): Potentials, business models and quantitative analysis (US, Copper Alliance, S, CH, A, NL)

Overview: Deployment view : one step further

Phase 4; Demand Side <u>Management</u> \rightarrow <u>Integration</u>

 \rightarrow

 \rightarrow

 \rightarrow

ENERGY TRANSITION

- Metering
- Control
- Passive
- Tariffed

- Monitoring
- \rightarrow Coordination
 - Active grids
 - Microtransactions

ightarrow Context awareness

- \rightarrow Participation
- ightarrow Pre-emptive grids
- ightarrow Transactive Energy, P2P

Responsiveness via incentives

 \rightarrow

 \rightarrow

ENERGY TRANSITION

- Metering
- Control
- Passive
- Fixed Tariffs \rightarrow

Monitoring

Active

- \rightarrow
- \rightarrow Inform, analyse and verify
- Coordination \rightarrow Emergent behaviour
 - \rightarrow Larger flexibility potential
- Flexible tariffs \rightarrow Incentive v punishment, smart P2P contracts

Prosumer

ENERGY TRANSITION

- Passive
- Monthly/yearly energy demand
- Manual control
- Economical
- On demand consumption
- HEMS Internal optimization

- \rightarrow Active
- \rightarrow Demand per hour/minute
 - ightarrow Home automation and remote control
- \rightarrow Environmentally friendly
- ightarrow Sustainability and self-consumption
- → Smart Communities/ Smart Cities

Networks

ENERGY TRANSITION

• Operation mode:Top-down→ More bottom-up• Investments:Asset driven (30+ y)→ Risk driven (10-15 y)• TariffsCapacity (max. kW/y)→ Real time (kW(t))• MonitoringPrimary substation→ Secondary substation

Project scope

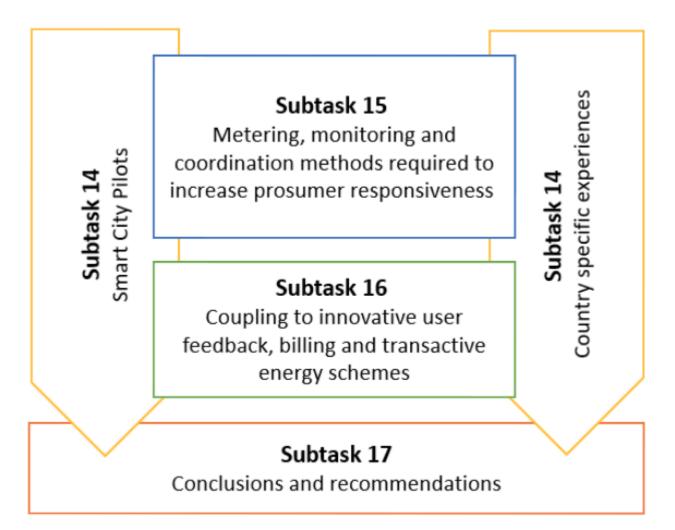
Responsive	 Responsive here reflects pro-activity and reactivity of the technological energy producing or consuming end-nodes but also of the (aggregated) users in providing responsiveness to different types of stakeholder requests in the energy commercial system and physical infrastructure.
Prosumer	 Prosumer, here, reflects part of the energy transition viz. the increased and, from a grid stability perspective, possibly disruptive production capabilities of small dispersed producers and also the increasing use of the electricity grid due to the increased electrification with HVAC (heat pumps) and electric mobility (EVs).
Networks	 The scope of networks considers the role of the physical grid, the aggregator and the, mostly rural, community/smart city dimension. Physical aggregation as well as virtual aggregation are considered.

Subtasks

Subtask 14:

Context analysis, use cases and Smart City pilots positioning

Subtask 15:


• Metering, monitoring and coordination methods required to increase prosumer responsiveness

Subtask 16:

• Coupling to innovative user feedback, billing and transactive(P2P) contract schemes

Subtask 17:

• Conclusions and Recommendations

Subtask 14 : Context analysis, use cases and Smart City Pilots

14.1 Smart city projects scan

- Scan of Smart city and Smart grid pilots of DSM
- Critical success factors for smart city projects including acceptance and impact
- Bottlenecks in upscaling successful pilots
 - How to increase technology readiness levels?

14.2 Granular large scale electricity monitoring

- Use of smart meter data and other available data sources (big data)
- Analyze the end-user behavioral characteristics and their relation to system operation.
- Identify all sources of information that can help with assessing user behavior
- Classify and analyze behavioral changes that occur with customer energy transition, observed via metering and interviews.

14.3 Aggregator composition and control schemes

- Portfolio (flexibility, curtailment, up- and down-regulation)
- Topology and level
- Operational requirements
- Control type (direct, indirect, transactional)

Subtask 15 : Metering, monitoring and coordination methods required to increase prosumer responsiveness

15.1 Commercial tariffs for flexible prosumers

- Develop a better mapping of commercial tariffs to customer behavior
- Rewarding flexibility and responsiveness on individual basis
- Overview of advantages for the prosumer to offer small scale flexibility to other actors in the electricity system (e.g. aggregators).
- Assess the relation between tariffs and to already existing and future automated control schemes.

15.2 Distribution grid tariffs for flexible prosumers

 Inventory of current and possible future distribution grid asset management, operation modes and associated tariff scheme components

15.3 Subsidies and taxes rewarding responsive prosumers

Possible new tax and subsidy schemes to accelerate energy transition

Subtask 16 :Coupling to innovative user feedback, billing and transactive energy schemes

16.1 Existing feedback and billing

- Make an inventory of existing feedback, reconciliation and billing systems for electricity
- Assess a number of pilots, that have been implemented with alternative approaches:
 - Transactive energy
 - P2P
 - Energy communities

16.2 Billing innovation

- Develop common view on feedback and billing innovation (e.g. Ethereum/smart contracts)
- Analyze the influence of instant feedback and microtransactions on user behavior and responsiveness

Subtask 17 : Conclusions and Recommendations

Conclusions form the Smart City pilot scan focusing on responsiveness of prosumers

Recommendation for tariffs, subsidies and taxes activating responsive prosumers

Recommendations for polices for billing innovation rewarding flexible prosumers

Collaborations

- IEEE, IEC and CENELEC standards committees
- ISGAN (SmartGrids)
 - Several annexes
- National stakeholder groups
 - NL/TKI Urban energy
- EERA JP Smart Grids
- DERLabs HESI-facility
- IEA/TCP
 - ECES (Storage)
 - HPT (Heat pumps)
 - PVPS (photovoltaic)

Project practical overview

- Project type: Overview, knowledge extraction and recommendation
 - Operating Agent leads a team of experts from each participating country
- Duration: 2 years
- Includes:
 - 4 country expert meetings (biannually)
 - 2 stakeholder and expert meetings (annually)
 - Results disseminated via several national international workshops and conferences
- Finances:
 - Dependent upon the number of participating countries (>4); 32-24kE for 2 years in total
 - In kind country expert contribution **200-300 hours** over 2 years in total

Questions? anna.kosek@tno.nl

More information? http://www.ieadsm.org/

