

Residential demand response

23-05-2018

Pieter.vingerhoets@energyville.be

The Linear project: end in 2015 but still relevant

Recruiting demand response pilot participants requires incentives

STAR PARTY

The user interaction

- Manual Demand Response suffered from 'user fatigue'
- Automatic demand response ... works!
- COMFORT is key

4 31/05/2018

Possible savings in an advanced tariff scenario

	Profit (%)	Standard deviation (%)
Dishwashers	18%	19%
Tumble Dryers	9%	20%
Washing Machines	11%	19%
DHW buffer 1	9%	/
DHW buffer 2	5%	/
DHW buffer 3	2%	/
DHW buffer 4	2%	/

• Significant savings are possible, depending on the device

• Hot water buffers are the most interesting

Appliance performance: WetGoods

Residential demand response, problem or solution for the grid?

Smart Domestic Hot Water buffer

Flexibility is 'asymmetric', increasing consumption is easier than delaying
Response of residential demand flexibility can be very fast

Voltage control with demand response: boiler switch on

• Effects are measurable but... limited and feeder-dependent

Grid upgrades are cost effective in comparison to smart LV grid control

Technical challenges: cost of communication Submeters WM & Home Gateway 1111111111 ee communicatio **External Vito** controller for Miele SOFTTRONIC 8 WM EcoComfort SIEMENS Non-smart

washing machine

Smart grid ready tumble dryer

9 31/05/2018

NEXT STEPS 1: Start-Up 'Thermovault'

- Tracer model developed for cluster control of Thermostatically Controlled Loads
- Aggregate optimize and dispatch approach
- Field trial on student dorm room fridges

- S. Iacovella, F. Ruelens, P. Vingerhoets, B. Claessens, G. Deconinck, "Cluster Control of Heterogeneous Thermostatically Controlled Loads Using Tracer Devices," IEEE Trans. on Smart Grid, Vol. 8, Iss. 2, Mar. 2017, pp. 528-536.
- Sandro Iacovella(Dec. 2016): Demand Response of Clusters of Residential Appliances Using Reduced-Order Models -Bridging the Gap Between Theory and Deployment,PhD dissertation KU Leuven (sup: G. Deconinck)

NEXT STEPS 1: Start-Up 'Thermovault'

• Quantified energy savings according to EU Ecodesign regulation 12.5% - 28.8%

• Providing 1MW of distributed storage for grid balancing in their first 9 months

NEXT STEPS 2: Bigger loads and cross-energy storage The Rennovates project

https://rennovates.eu/

Kellendonk

Residential dwelling refurbishment:

- Add shell around house (in 7 days)
- Add energy box (HP, hot water storage, battery)
- Add PV

Next steps 3: the Thor Park

Living lab environment

- Renewable energy generation
- Cross-technology research
- Integrate research, enterpreneurship and education
- ICT platform to test innovative market concepts
- Energy-neutral zone
- Regulation-free zone

• Regulation free zones as test bed for future technologies and user interaction

Conclusions

- User comfort is key for residential demand response
- Large sources of flexibility (heat pumps, batteries, ...) will add to the benefits
- Residential demand response can be both solution and problem for the local grid

Next steps

- Tracer algorithms to manage a large number of appliances
- Cross-energy vector research in large-scale Rennovates demonstration
- EnergyVille Thor campus: Living lab environment

Pieter.vingerhoets@energyville.be