

IEA DSM Task 17 Status ExCo Meeting Stockholm

Matthias Stifter, AIT René Kamphuis, TNO

ExCo Meeting Stockholm (Sweden) March 17-18, 2016

Progress Subtask 10 - Role and potentials of flexible consumers

Approach

- Requirements for processes from the micro and macro perspective. The macro perspective includes power distribution and commercial operation.
- An important aspect of this is the virtual aggregation and service provisioning.
- Analysis of demo projects
- Country and regional specific differences

Subtasks

- Subtask 10 Role and potentials of flexible consumers
- Subtask 11 Impact on Grid and Markets
- Subtask 12 Sharing experiences / finding best practices
- Subtask 13 Conclusions and Recommendations

Progress of Subtasks

For more information, visit www.ieadsm.org

Progress of Subtasks

Overview of Progress:

Task 17.3 Progress	
Subtask 10	90%
Subtask 11	50%
Subtask 12	80%
Subtask 13	50%

Progress Subtask 10 - Role and potentials of flexible consumers

Objectives

 Assess the concepts and implementations of customer and home energy management systems (CEMS/HEMS), possibly linked to the smart meter, in different (participating) countries

Deliverable

 Roles, Potentials and Interactions of Flexible Consumers and Prosumers

Progress:

• Discussion of consolidation of final comments at the expert meeting

Timeplan:

 Inputs from Experts and update from OAs within 3 weeks and final review until mid April

Progress Subtask 10 - Role and potentials of flexible consumers

Structure

❶ 1 Introduction

- 1.1 Background
- 1.2 Motivation to Engage Flexible Resources
- 1.3 Policy Influences
- 1.4 Document Structure
- © 2 Residential DR in a Modern Grid
 - 2.1 Existing and New Roles in System Operation
 - 2.2 DR-related Actors
 - 2.3 Application of DR in the Electric System
- 3 Assessing models of Residential DR Resources
 - 3.1 General Characteristics of DR Resources
 - 3.2 Specific DR Equipment Capabilities RK44]
- 4 Assessing Potential Capacity of Residential DR
 - 4.1 DR Potential Capacity Categories
 - 4.2 <u>General DR Potential</u>
 - 4.3 DR Potential in Households
- © 5 Implementing Residential DR
 - 5.1 ICT Enabling DR Automation and Integration
 - 5.2 Consumer Participation and Automation
 - 5.3 Aggregated Behavior of DR Resources
 - 5.4 Evaluation, Measurement, and Verification
 - <u>5.5</u> Challenges to Implementation

Subtask 11 Evolution of residential DR

• Evolution of ICT Architecture for enabling Flexibility

Subtask 11 - Changes and impacts on grid and market operation

SG EG 3 – Regulatory Recommendations for the Deployment of Flexibility

Progress Subtask 11 - Changes and impacts on grid and market operation

Objectives

 Assess the impact on grid and market operation based on technology penetration scenarios developed in subtask 5 and 9 (developed in phase 2).

Deliverable

- Financial and maturity assessment of technologies for aggregating DG-RES, DR and electricity storage systems
- \rightarrow Valuation analysis of residential demand side flexibility

Progress:

Discussion on content, structure and contributions at the expert meeting

Timeplan:

- OA (AIT) prepares revised draft within 2 weeks
- Inputs from Experts with 6 weeks from now
- Next iteration End of April

Progress Subtask 11 - Role and potentials of flexible consumers

Structure

- I Introduction
 - 1.1 <u>Backg</u>round
- 2 Value creation for flexibility [ET14] in electricity systems
 - 2.1 Overview about business cases for flexibility and needed dynamics
 - 2.2 Value ET23][ET24] creation for society
 - 2.3 Value creation in the electricity market
 - 2.4 Value creation for the transmission system
 - 2.5 Value creation for the distribution system
 - 2.6 Value creation for the customer
 - 2.7 <u>Mapping of the technologies to the business cases</u>
- 3 Examples An integrated approach_[SEW30] for the

- 3.1 <u>Country-specific examples</u>
- 3.2 Discuss similarities and differences
- 4 Valuation analysis for demand side flexibility projects
 - 4.1 <u>Methodology for valuation of flexibility</u>
 - 4.2 Valuation of DR projects
 - 4.3 Lessons learned from CBA projects
- 5 Maturity assessment -> TRL
- 6 <u>References</u>

ST 11 Valuation Methodology

• Concept for valuation of DR projects

→ Input from CBA Analytical Framework (ST12)

ST12 - Sharing experiences and best practices

- CBA Analytical Framework further developed
 - based on Masterthesis, EcoGrid EU experiences and JRC CBA framework
- Inputs:
 - HiT (AIT)
 - EcoGrid EU (AIT)
 - Power Matching City II (TNO)
 - Smart Grid Gotland (KTH)
 - U.S.
 - India DR pilot project

Analytical Frame	work for Cost Benefit Analysis	Answers
DR Service / busi	ness model / objective	
	Energy only: day ahead, intra-day, shifting	
	Balancing market: (primary, secondary, tertiary)	
Market	New market concept	
	Capacity market: long term market products	
	Balancing group / Reduce Imbalance cost	
Notwork	Network congestions	
Network	Network ancillary services (e.g. reactive power)	
Concumor	Peak shaving (import from network)	
consumer	Self-optimization	
DR Program/Sche	me	
	Туре	
	Price base	
	Duration of one price step	
Price signal	Price validity	
	Price steps	
	Tariff basis: Height of tariffs / base for tariffs	
	Priced spread - Height of tariffs	
Direct	direct control	
Communication a	and Control concept	
	Control and management (central / decentral)	
	Optimization	
Enabling	Signal	
Technology	Data communication	
	Interoperability (vendor independent)	
DR Resource and	devices	
Device	type of resource	
Parameters	power, duration, reduction, shifting, ramp, interval	
	Load shifting potential	-
Potential	availability	
Aggregation		
Pooling	reliability	
Customer Partici	pation	
	acceptance	_
Motivation	participation	
	willingness to pay	
Applicability	0	
	regulatory and legislatory framework	_
Realisation	scalability, market penetration	
	replicability (region specifics)	
Benefit	· · · · · · · · · · · · · · · · · · ·	
Quantitative	profitability	
	comfort	
Qualitative	additional service (monitoring)	
	environmental benefits	
osts	environmental benefits	
	Communication	
Cingle	Control	
Single	Control Devices (upgrade)	
	Certine (Essential of sector	
Dellaut	Scaling / Economies of scale	
Rollout	Adaption	
	Ацарцоп	

Progress Subtask 12 - Sharing experiences and finding best practices

Objectives

 Based on the collected pilots and case studies from the previous subtasks, the results and findings of the finished projects in term of successful implementations, barriers and effectiveness will be analyzed.

Deliverable

 Best practices in applying aggregated DG-RES, DR and Storage for retail customers

Progress:

- Important and representative projects have been collected from the expert's presentation and inputs.
- The selected pilot projects are taken for the analysis part of the deliverable from Subtask 10.
- Additional input from international workshops have been gathered and compiled for the document.

Timeplan:

- Structure for ST12 document from OAs
- Draft ST12 within 3 weeks.

ST12 - Sharing experiences and best practices

- DR Project List
- Expert presentations from workshops and country updates
 - Structure for document needed
- Methodology and Analytical Framework for Project Assessment
 Masterthesis
- Extended CBA Analytical Framework Inputs so far:
 - HiT (AIT)
 - EcoGrid EU (AIT)
 - Power Matching City II (TNO)
 - Smart Grid Gotland (KTH)
 - ?

ST12 - Sharing experiences and best practices

- DR Project List
 - Needs cleanup / translation
 - Is it of use for Task 17?

Anzahl x Anzahl ! Anzahl ? Anzahl ·

Progress Subtask 13 - Recommendations

Objectives

 Recommendations will arrived at in close interaction with the experts' opinions and will at least provide a ranking based on impacts, costs and likely future penetration of the technologies.

Deliverable

- Final recommendations.
- Could be integrated into other deliverables

Timeplan

 Derive recommendations after finalization of deliverables starts at end of April

Progress Subtask 13 – Preliminary Recommendations

- **1.Community creation supports user activation** as the sense of belonging to a community influences the engagement and participation
- 2.Variable tariff models need to offer an added value for an acceptable price to attract consumers
- 3.Based on the visualized electricity consumption data **consumers can be incentivized with premiums and other rewards** to participate in DR programs
- 4.Data protection, privacy & security aspects need to be considered when ICT infrastructures and systems are designed and participation agreements with consumers concluded
- 5. The institutional and regulatory transformation of the energy market requires the **introduction of new market players** that develop services attractive for consumers
- 6.Detailed cost-benefit-analyses are crucial for defining the added value of business models; financial advantages for consumers are quite low. Thus, aggregators respectively companies, who offer aggregation services, need to concentrate on key messages on a broader level in order to attract consumers
- 7.Standardization and interoperability of technologies proved to be a basic condition for interaction of technical appliances and enabling technologies.

Status, Outreach and Planning

Meetings and Seminars

Meetings

Date	Place	# of	Type of	Govern-	Industry	Academic
		Experts	meeting	ment		
09-02-2016	Webmeeting	8	Web	1	2	5
14/15-3-2016	Stockholm	12	Real	1	2	9

Date	Place	Partcipant	Type of meeting	Govern-	Industry	Academic
		S		ment		
22/23-10-2015	Paris	15	Exchange meeting with	6	3	6
			IEA/DESIRE task			
1.3.2016	Paris	35	IEA Smart Energy	20	10	5
			Systems Roadmap			
12-02-2016	Graz	50	Conference	10%	50%	40%
16.03.2016	Trondheim	30	Webconference ECB	-	_	-
			Annex 67			

Meetings and Seminars

Seminars

Date	Place	Partcipan	Type of meeting	Govern-	Industry	Academic
		ts		ment		
22/23-10-201 5	Paris	15	Exchange meeting with IEA/DESIRE task	6	3	6
1.3.2016	Paris	35	IEA Smart Energy Systems Roadmap	20	10	5
12-02-2016	Graz	50	Conference	10%	50%	40%

For more information, visit www.ieadsm.org

Objectives for the upcoming months

Reports

- Subtask 10 Role and potentials of flexible consumers
 - Finalize Deliverable of Subtask 10: *Roles and Potentials of Flexible Consumers and Prosumers*
- Subtask 11 Changes and impacts on grid and market Finalize Deliverable of Subtask 11: Valuation analysis of residential demand side flexibility

Subtask 12 - Sharing experiences and finding best practices

• Finalize Deliverable of Subtask 12: Update and Analyse projects.

Subtask 13 – Recommendations

• Finalize Deliverable of Subtask 13.

Planned Meetings and Seminars

Meetings

Date	Place
May 10 th 2016	Linz, Austria

Seminars

Date	Place
May 9 th 2016	Linz workshop with other IEA-tasks parallel to Smart grids week

For more information, visit www.ieadsm.org

Outreach

- Energy Innovation Conference at TU Graz:
 - Lessons Learned from European Pilot Projects Recommendations on Market Access Requirements for Electricity Consumers
- Ongoing exchange with "contributing" countries
 - Contact with Australia, India, Finland
- ECB Annex 67 on Smart Buildings
 - Webconference / Exchange
- HPP Annex 42 on Smart Heatpumps
 - Exchange
- IEA Workshop on Roadmap to Smart Energy Systems
 - Contribution on Steering Group?

Symposium and Expert Meeting

- Workshop Linz May 9th 2016
 - IEA-DSM Flexibility symposium: http://www.smartgridsweek.com/ workshops.html
- Program / IA commitments

Symposium Program - IEA Energy Experts Exchange

• Demand Response and Flexibility

IEA Demand Side Management – Task 17: Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources and Energy Storages

IEA DSM - Task 24 Closing the Loop: Behaviour Change in DSM – From Theory to Practice

IEA DSM - Task 25 Business Models for a more effective market uptake of DSM energy services

IEA HPP Heat Pump Program – Annex 42: Heat Pumps in Smart Grids

IEA ECES Energy Conservation through Energy Storage – Annex 28: Distributed Energy Storage for the Integration of Renewable Energies" (DESIRE)

IEA ECB Energy in Buildings and Communities - Annex 58 – Reliability and Energy Performance

IEA ECB Energy in Buildings and Communities - Annex 67 – Energy Flexible Buildings

ISGAN – Annex 6 Power T&D Systems

IEA PVPS - Task 14 High Penetration of PV Systems in Electricity Grids

IEA Hybrid & Electric Vehicle – Task 28: Home grids and V2X technologies

Participation

Country	Commitment
Austria	Y
Switzerland	Y
Swede	Y
Copper Alliance	Y
The Netherlands	Y
USA	Y
Italy	Ν
Belgium	Ν
Serbia	Ν
India	Ν
Germany	Ν
Finland	Ν
Australia	Ν

Questions

AIT Austrian Institute of Technology	TNO Netherlands organization for science and technology
Matthias Stifter	René Kamphuis
Energy Department Electric Energy Systems	Energy efficiency program Service enabling and management
Giefinggasse 2 1210 Vienna Austria T +43(0) 50550-6673 M +43(0) 664 81 57 944 F +43(0) 50550-6613 matthias stifter@ait ac at http://	Eemsgolaan 3, 9727 DW Groningen T +31 (0) 621134424 PO Box 1416 9701 BK Groningen The Netherlands
www.ait.ac.at	www.tno.nl

Backup

Subtask 10 - Role and potentials of flexible consumers

- Controllability requirements (generation and consumption)
- Opportunities, challenges and barriers for flexibility services (providers and technologies)
- Energy and power balancing potentials
- Smart technologies (SM and Customer Energy MS)
 - VPPs
 - EV charging
 - DG-RES integration and storage
 - Integrating heat pumps and thermal storages

Subtask 11 - Changing to new roles for actors

- Methodology development for assessing / quantifying impact
- Grid, market and customers (prosumer/consumer)
- Sharing common benefits/losses
- Optimization potential (e.g. building management system)
- Regulatory and legislative requirements
- Cost Benefit Analysis for DR

Subtask 12 - Sharing experiences / finding best practices

Collection of data

Workshops, Reports

Lessons learned from existing pilots

 EcoGrid-EU Bornholm, PowerMatchingCity I and II, Linear, Greenlys, Building2Grid, SmartCityGrid: CoOpt, eEnergy, ...

Country specifics differences in the implementation and applicability

Extrapolation of the results from previously collected projects on applicability

Subtask 13 - Conclusions and recommendations

- Based on the experts' opinion
- Will provide a **ranking recommendation** based on
 - Impacts
 - Costs
 - Future penetration of the technologies

