Frequency Shift Acceleration Control for Anti-islanding of a Distributed Generator

2008.9.9

Seul-Ki Kim

Overview

- 1. Introduction
- 2. Frequency Shift Acceleration Control
- 3. Design of Acceleration Gain
- 4. Simulation Results
- 5. Experimental Results
- 6. Conclusion

Introduction

- Islanding
- Anti-islanding Methods
 - Passive
 - Active
- Proposed Algorithm
 - DQ control
 - Small signal analysis
 - Simulation & Experiment

Islanding

Non-Detection Zone (NDZ)

NDZ Impacts Islanding Detection

Anti-islanding Methods

FSAC

Islanding Condition

Key Idea

Power controller of DG inverters

Design of Acceleration Gain

When <u>islanded</u>, large enough to destabilize system
Small Signal Analysis

When <u>grid-tied</u>, small enough to keep ΔQ beyond the limit

Frequency Step Response

Lower Limit by Small Signal Analysis

$$\left(Q_{inv}-Q^*\right)\left(K_P+\frac{K_i}{s}\right)+\left(\omega\frac{\omega_f}{s+\omega_f}-\omega_0\right)K_{pf}=i_d^*$$

$$\left(K_{P} + \frac{K_{i}}{s}\right) \Delta Q_{inv} + K_{pf} \frac{\omega_{f}}{s + \omega_{f}} \Delta \omega = \Delta i_{d}$$

$$s^{2} + \left[\frac{e_{q}\left\{2+3e_{q}\left(K_{p}+\frac{K_{i}}{\omega_{f}}\right)\right\}\left(\frac{Q_{f}}{\omega_{0}R}\right)-K_{pf}}{2e_{q}\left(\frac{Q_{f}}{\omega_{0}R}\right)\left(1+\frac{3}{2}e_{q}K_{p}\right)}\right]\omega_{f}s + \frac{3}{2}e_{q}\left(\frac{K_{i}\omega_{f}}{1+\frac{3}{2}e_{q}K_{p}}\right)=0$$

For the islanded system to be unstable

$$K_{pf} > \left\{ 2 + 3e_q \left(K_p + \frac{K_i}{\omega_f} \right) \right\} \cdot \left(\frac{Q_f}{\omega_0} \right) \cdot \left(\frac{e_q}{R} \right)$$

$$I_q$$

$$K_a > \left\{ 2 + 3\sqrt{2} V_n \left(K_p + \frac{K_i}{\omega_f} \right) \right\} \cdot \left(\frac{Q_f}{\omega_0} \right)$$

 V_n : Inverter terminal voltage, Q_f : Quality factor, ω_{f} : Measuring frequency ω_{0} : Nominal frequency

FSAC eliminates real power dependency of control gain !!

Upper Limit by Freq. Step Response

$$\Delta i_d(s) = (K_P + \frac{K_i}{s}) \Delta Q_{inv}(s) + K_{pf} \Delta \omega(s)$$

$$\left|\Delta Q_{inv}(s)\right| = \frac{K_{pf}}{K_p + 2/(3e_q) + K_i/s} \left|\frac{\Delta \omega}{s}\right|$$

$$\Delta Q_{inv}(t) = \frac{K_{pf}}{K_p + 2/(3e_q)} |\Delta \omega| \exp[st]$$

Maximum Q disturbance due to frequency step change

$$\Delta Q_{\max} > \frac{K_{pf}}{K_p + 2/(3e_q)} \left| \Delta \omega_{\max} \right|$$
$$\eta_{preset} = \frac{\Delta Q_{\max}}{P_{inv}}$$

$$K_{pf} < \left(1 + \frac{3}{2}e_q K_p\right) \frac{\eta_{preset}}{\left|\Delta\omega_{max}\right|} \left(i_q^*\right)$$

$$K_a < \left(1 + \frac{3\sqrt{2}}{2} V_n K_p\right) \frac{1}{\left|\Delta \omega_{\max}\right|} \cdot \eta_{preset}$$

Simulation Results

- Simulation conditions
 - $P_{inv} = P_{load} = 20kW$, $Q_{inv} = Q_{load} = 0kVar$
 - Detection condition (IEEE P1547)
 - Voltage : 110% > or < 88%
 - Frequency : 60.5 Hz > or < 59.3 Hz
 - R-L-C Load (IEEE 929 & UL 1741) Quality factor $Q_f = 2.5 \rightarrow Q_L \& Q_C = 2.5 \times P_{inv}$
 - Calculated Range of K_a : 0.076 < K_a < 0.3
 - η_{preset} = 0.1

Without FSAC

With FSAC ($K_a = 0.15$)

Frequency Variations with Different gains of K_a

Calculated & Simulated results for Lower Limit of K_a

K _p	K _i	Calculated x100	Simulatedx100
2	5	2.6	2.8
	20	2.6	3.0
	50	2.6	3.3
5	5	4.5	4.6
	20	4.5	4.7
	50	4.5	5.0
10	5	7.6	7.6
	20	7.6	7.7
	50	7.6	7.8
15	5	10.6	10.6
	20	10.7	10.7
	50	10.7	10.7
20	5	13.7	13.6
	20	13.8	13.7
	50	13.8	13.7

Harmonic Spectrum

Experimental Results

Before FSAC Implementation

After FSAC Implementation ($K_a = 0.1$)

Frequency with FSAC ($K_a = 0.057$)

Lower limit of K_a :

Calculation/simulation/experiment = 0.076/0.078/0.057

→ Acceptable

Conclusion

- Based on dq control and positive feedback
- \triangleright P_{inv} dependency of control gain removed
- Design method and criteria suggested
- FSAC enables
 - Zero NDZ possible
 - Minimizing impact on power quality
 - Easy implementation