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Overview



Islanding

Anti-islanding Methods
- Passive

- Active

Proposed Algorithm
- DQ control

- Small signal analysis

- Simulation & Experiment

Introduction
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Non-Detection Zone (NDZ)



NDZ Impacts Islanding Detection



Anti-islanding Methods
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Key Idea
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Frequency Positive Feedback



Power controller of DG inverters
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Q controller with FSAC
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aqpf KiK * Kpf : Positive feedback gain
Ka : Frequency shift acceleration gain



When islanded, large enough to destabilize

system Small Signal Analysis

When grid-tied, small enough to keep Q

beyond the limit

Frequency Step Response

Design of Acceleration Gain
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Lower Limit by Small Signal Analysis
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For the islanded system to be unstable
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Vn : Inverter terminal voltage, f : Measuring frequency
Qf : Quality factor, 0 : Nominal frequency

FSAC eliminates
real power dependency of control gain !!



)()()()( sKsQ
s

KKsi pfinv
i

Pd

ssKeK
K

sQ
iqp

pf
inv /3/2

)(

st
eK

K
tQ

qp

pf
inv exp

32
)(

Upper Limit by Freq. Step Response

Maximum Q disturbance due to frequency step change
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Simulation conditions

Simulation Results

• Pinv = Pload = 20kW,  Qinv = Qload = 0kVar
• Detection condition (IEEE P1547)

- Voltage : 110% > or < 88%
- Frequency : 60.5 Hz > or < 59.3 Hz

• R-L-C Load (IEEE 929 & UL 1741)
Quality factor Qf = 2.5 QL & QC = 2.5 x Pinv

• Calculated Range of Ka : 0.076 < Ka < 0.3
• preset = 0.1



Without FSAC With FSAC (Ka = 0.15)
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Frequency Variations with Different gains of Ka
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Qinv disturbance due to in grid-tied operation

Qinv at Ka = 0.3



Harmonic Spectrum

Without FSAC

With FSAC
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Experimental Results

Pinv =  4.0kW, Qinv = 0kVar
Kp = 10, Ki = 5
Pload = 4.0kW, Qload = 0kVar
Qf of RLC load = 2.5

GridPinv + jQinv

Pload + jQload

P + j Q

RLC Load

InverterDC
source



Before FSAC Implementation



After FSAC Implementation (Ka = 0.1)



Frequency with FSAC (Ka = 0.057)

Lower limit of Ka :
Calculation/simulation/experiment = 0.076/0.078/0.057

Acceptable



Based on dq control and positive feedback

Pinv dependency of control gain removed

Design method and criteria suggested

FSAC enables
• Zero NDZ possible
• Minimizing impact on power quality
• Easy implementation

Conclusion


