

Task XIX: Micro Demand Response and Energy Savings

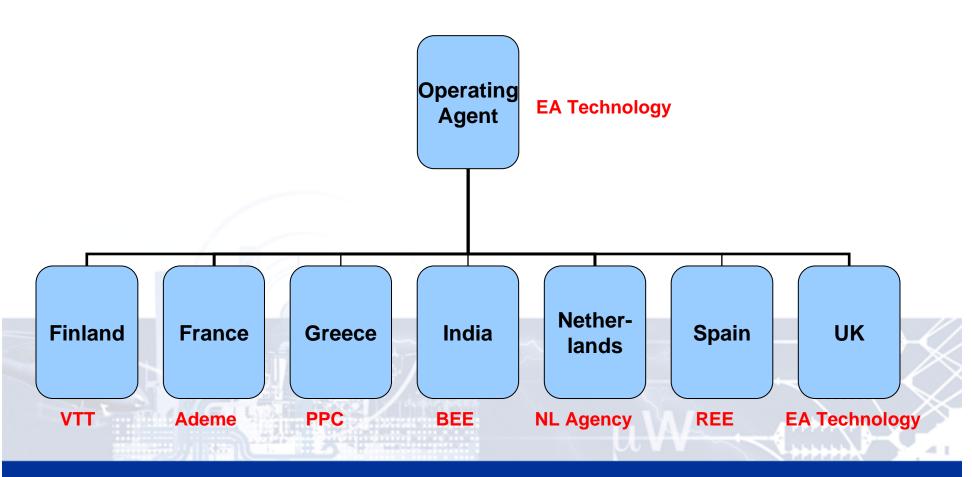
Final Management Report

Presented by Linda Hull

Outline of Presentation

- Overview of project
 - Objectives and work programme
- Task Status Report
 - Objectives / Progress for last 6 months
 - Finance
- Final Management Report
 - Work Performed
 - Outputs
 - Achievements
- Matters for the ExCo
 - Approval of Final Management Report

Overview of Task XIX



Innovators in Power Engineering

Task XIX Project Participants

Task XIX – Summary of objectives

- Demand response and energy saving services in the residential and small and medium enterprise sectors
 - End-use monitoring and feedback
 - Time of use pricing
 - Remote / automatic demand control
- Identifying the business case for demand aggregators / energy saving service providers

Work Plan

- Subtask 1: Demand response and energy saving products
- Subtask 2: End use demand changes
- Subtask 3: Demand response & energy saving delivery mechanisms
- Subtask 4: SME customer costs and benefits
- Subtask 5: Residential customer costs and benefits
- Subtask 6: Business case estimation

Task Status Report

Objectives / Progress over last 6 months

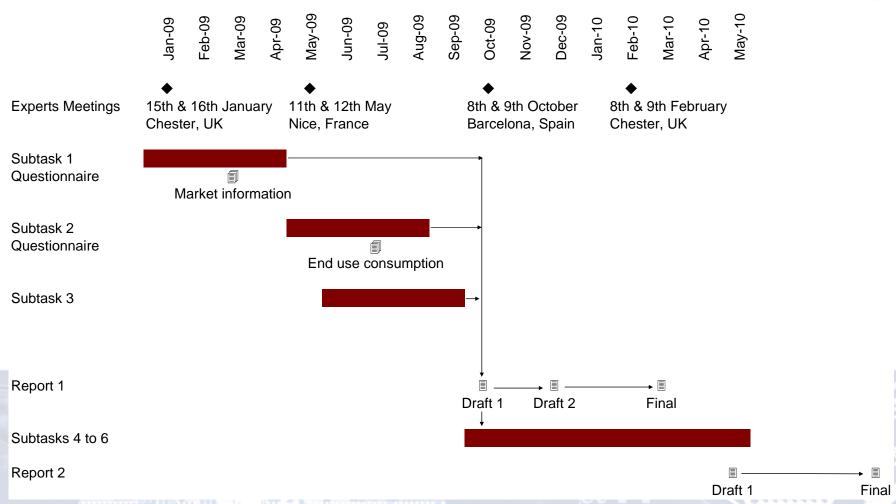
- Finalise the scenarios to be used.
- Obtain the necessary data and information from the Task Experts on the country specific case studies.
- Refine Excel models and produce worked examples.
- Write the second report The Business Case for Micro Demand Response and Energy Saving.

ALL COMPLETED END MAY 2010

Finance

Subtask Description	Original Budget (Euros)	Revised Budget (Euros)
1 Demand response and energy saving products	45,875	40,141
2 End user demand changes	54,895	48,033
3 Delivery mechanisms	39,025	34,147
4 SME costs/benefits	41,640	36,435
5 Residential costs/benefits	41,640	36,435
6 Business case estimation	42,825	37,472
Project management, ExCo liaison & reporting	48,795	42,696
Travel and subsisdence	23,150	20,256
	337,845	295,614

Expenditure to end August 2010 £197,753

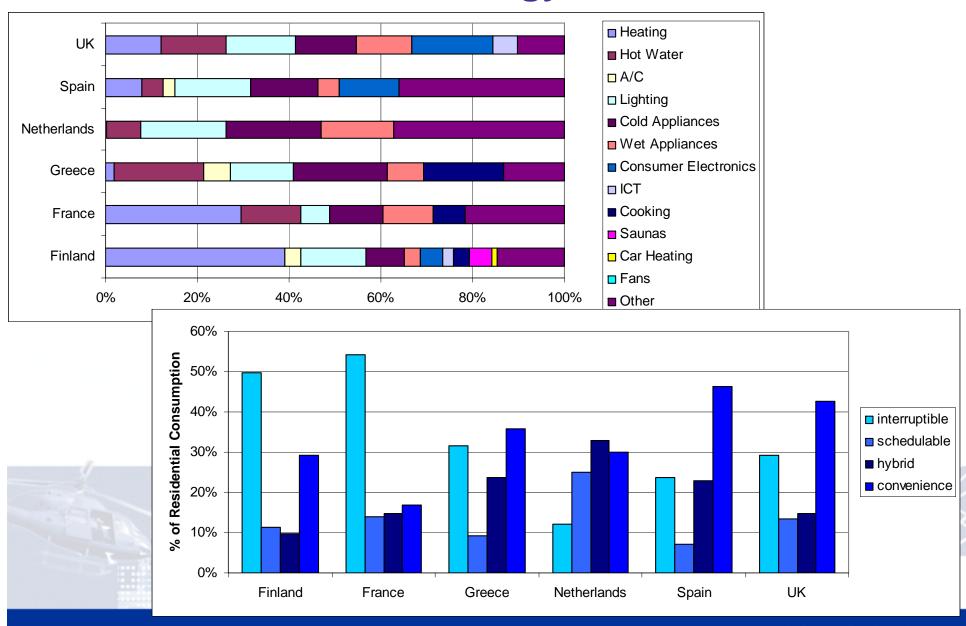

Final Management Report

- Work performed
- Reports
 - Report 1 Overview
 - Report 2 Lessons learnt and conclusions
 - Dissemination of results
- Recommendations

Work Performed – overview (

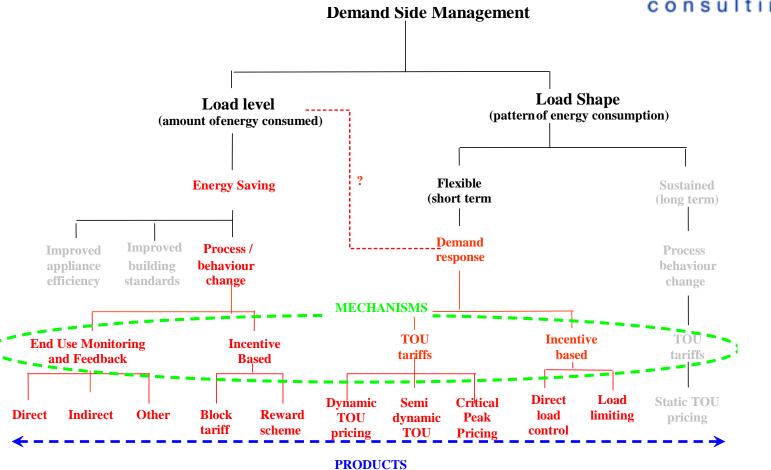
Report 1:

Micro Demand Response and Energy Saving Products: Definition of Requirements & Options for Effective Delivery

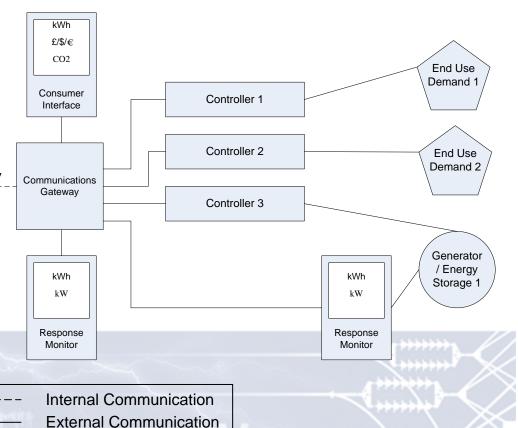


Micro Demand Response and Energy Saving Products: Definition of Requirements & Options for Effective Delivery

- Impact of market structure
 - Opportunities (drivers) for demand response and energy savings
 - The way participants interact with one another (barriers)
- Opportunities for demand response and energy savings
 - Types of loads suitability for different products/services
 - Difficult to assess due to lack of data particularly for SMEs
- Products and services
 - Advantages / disadvantages considered
- Review of pilots and case studies
 - Results wide ranging
- Technical architecture requirements
 - The minimum requirements


Residential energy end uses

Products



Technical Architecture

- Controller
- Consumer Interface
- Response Monitor (Meter)
- Internal Communication
- Communications Gateway
- External Communication

Minimum Functionality Example DR – Dynamic Time-of-Use Tariffs

Controller	Consumer Interface	Internal Communications	
*Trigger Mode: Manual [Automatic] *Demand Modification: On/Off [& Modulated] *Location: General Purpose Outlet (GPO) [Central Home Energy Management System]	*Information: Tariff Price & Historical consumption *Notification: Meter Display [VDU+Moblile/Pager] & Bills *Notification Frequency: Half-houly/Hourly & Billing Cycle (monthly, quarterly, annually) *Input: None [Consumer Preference Input]	None [*Signal Flow: Duplex (Two- way)] [*Medium: Wireless]	
Response Monitor (Meter)	Communications Gateway	External Communications	
*Type: Interval Meter *Data Transfer: Manual Read Locally [Read Remotely] *Tariff: Tariffs can be applied retrospectively with time stamping	*Signal Flow: Simplex (One-way) [Duplex (Two-way)] *Situation: Customer Interface (Meter Display/VDU) [Controller (Central Home Energy Management System)]	*Signal Flow: Simplex (One-way) to Consumer [Duplex (Two- way)] *Connection: [To/]From Aggregator, ESCO or Supplier	

Report 1: Conclusions

- Impact of market structure is significant
 - Different drivers / opportunities for new products
 - Different barriers
- Lack of data on energy end use consumption
 - Time of day data
 - Small and medium enterprises
- No 'one size fits all solutions'
 - Products
 - Energy end uses

Report 2: Evaluating The Business Case for Micro Demand Response and Energy Saving

Evaluating The Business Case for Micro Demand Response and Energy Saving

- Step-by-step methodology
- Five country specific case studies

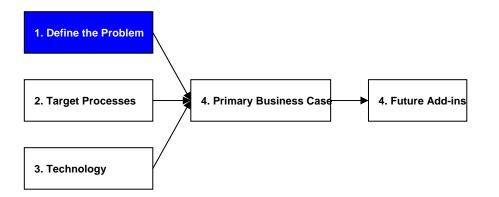
Finland: Dynamic control of residential storage heater loads

France: Dynamic control of residential storage heater loads

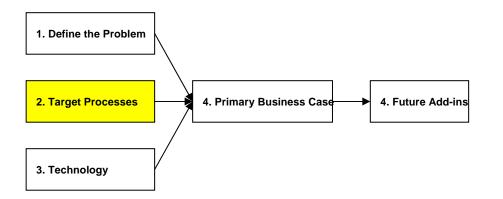
Greece: Subsidy for 'green a/c' equipment

India: Replacement of incandescent lamps with CFLs

UK: Direct load control of commercial air-conditioning loads



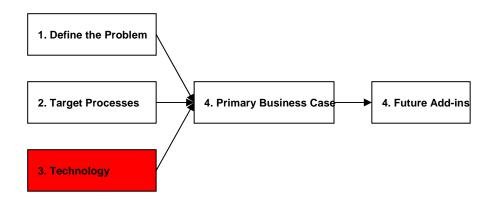
Step-by-step approach



The problem?

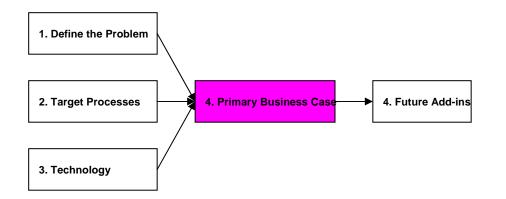
National Grid (TSO) increasing need for Balancing Services

Reserve	2010/2011	Forecast 2025/26
Volume	3 TWh per annum	8 TWh per annum
Cost	£311m per annum	£690m per annum



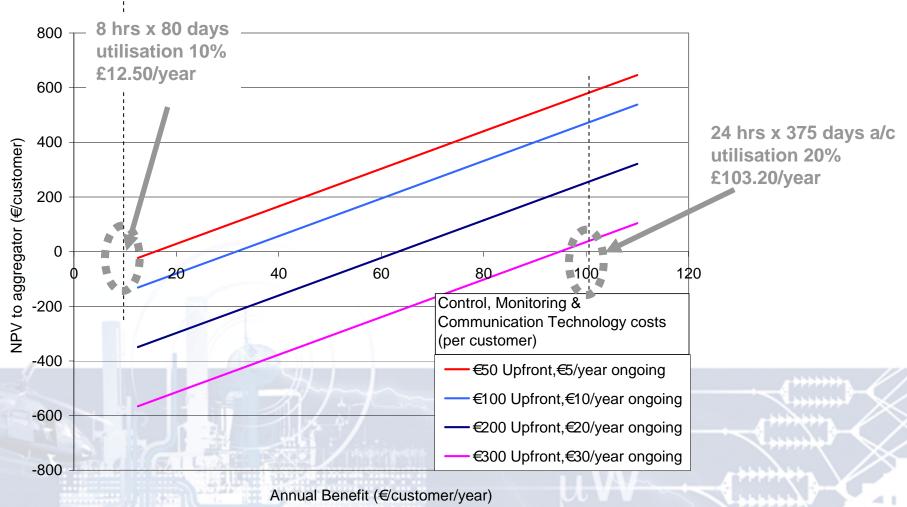
Target Processes?

- Cooling and ventilation loads significant
 - ~10% to 20% of electricity used in services/commercial sector
- Three scenario's considered
 - Single split a/c unit (power consumption 2kW / cooling o/p 6kW)
 - Scenario 1: daytime / summer operation
 - Scenario 2: daytime / year round operation
 - Scenario 3: 24 hours per day / year round operation

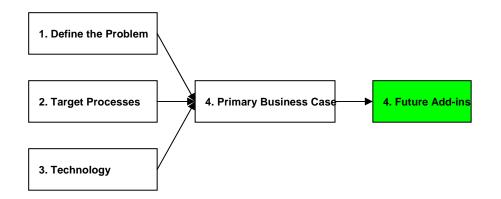


Control, Monitoring, Communication Technology

- Control: automatic on/off control of compressor
- Meter: existing advanced metering (AMR)
- Comms Gateway: dedicated gateway needed
- Internal Comms: one way wireless (or wired)
- External Comms: one way PSTN, GSM or internet


Primary Business Case

- Aggregator:
 - Expenditure: Purchase of controllers
 - Income: Provision of balances services to TSO
- Consumer:
 - Energy savings advice (sufficient?)
- TSO:
 - Avoided shortfall of reserve and equivalent price to conventional sources



UK: Direct Load Control of Commercial A/C (1 x 2kW)

Future Add-Ins (Secondary Business Case)

- Provision of frequency response
- Additional technology costs
 - Real-time control

Report 2: Conclusions

- Step-by-step approach provides a useful way of assessing business case
- Difficult to obtain robust data
 - Technology costs
 - Amount of demand available for specific products/services
 - Value of demand response
- Roll of smart metering needs to be considered
 - None of the case studies utilised smart meter functionality (when available)

Dissemination of Results

- Reports 1 & 2 confidential to participants until March 2011
 - After March 2011: Available from public area of IEA DSM web-site
- In country dissemination led by Experts
 - National focus meetings
 - Summary reports
 - National reports

Overall Recommendations

- Impact of market structure important
 - Market mapping could help interaction between participants
 - Role of regulation needs to be understood
- Difficult to assess level of demand response / energy savings
 - Need for improved energy end use information
- Technology costs
 - Need for on-going support of innovation in control and monitoring technology
- Smart meter
 - Third-party access

Matters for Executive Committee

Questions / comments

Approval of Final Management