Deferral of network investments by DSM - New Zealand experiences

Dr. Magnus Hindsberger

Industry workshop, Mumbai, 26 March 2008

TRANSPOWER

Overview

- NZ power system some background
- Case 1 Energy efficiency
- Case 2 Load management, ripple control
- Case 3 Orion, managing peak in distribution
- Case 4 Transpower, South Island DSP Trial

Demand/generation growth

Transmission – the issues

Aging assets – new investments needed, but nobody wants it nearby

DSM can help to mitigate risk of delays in transmission built or as a option to defer the need.

Transmission price signals

- 3 transmission signals may trigger DSM:
 - Anytime transmission price signal "LRMC proxy"
 - Nodal price signal, when starting to congest
 - Grid support contract, when needed for reliability

Price signals – do the work?

- Transmission pricing methodology (TPM) works:
 - Specified as main driver for ripple control in NZ
 - Is the signal optimal?
 - Regional
 - Sunk costs
- Market price signals tend to come to late
 - Price separation appears when the problem is acute
 - Lack of long-term forward market (CfD between areas)
- Grid Support Contracts may work (yet to be seen)
 - See comments later...

Case 1 – Energy efficiency

Impacts from reducing NZ electricity demand through energy efficiency

TRANSPOWER

Future demand scenarios

Avoided costs: generation, T&D, energy

(\$2007 million NPV 4% real discount rate)

	High to medium demand forecast	Medium to low demand forecast	
T&D	583	387	
Generation	5817	5139	
Energy	2593	3285	
Total	8993	8811	

Based on total system costs 2007-2042 Economic potential to achieve reduction till 2025 exists

Case 2 – Load management

Load management by ripple control – now and in the future

TRANSPOWE

Ripple control

- Ripple controlled water heaters has been used for decades.
- Estimated ~880 MW controlled load (~13% of peak)
 - Up to 400 MW peaking capacity deferred ???
 - About 4 years of load growth
 - OCGT costs ~\$1 million/MW or \$70,000/MW per year
 - Generation savings equal to \$28 million per year
 - Additional savings in T&D and energy costs
- Transmission pricing methodology specified as main driver behind use of ripple control by most distribution companies in New Zealand
- Risks: Lack of incentives to maintain + competition from other energy sources for future energy demand

Sample diurnal load profiles

New "old" technology taking over?

- Radio ripple control to be rolled out in New Zealand
 - Based on long-wave radio technology
- Has been used in Europe for years
- Highly reliable
 - Redundancy of all major parts
 - Quick (1 second to send signal)
- Lower costs alternative than building ripple injection plants
 - 3 masts can cover whole NZ with each of the major cities being covered from two masts
- Controlled areas can be targeted in great detail
 - Send signal to individual receivers, groups of receivers, or all

Case 3 – Load management/DG

ORION – Lowering peak demand growth in the distribution network

TRANSPOWE

Breaking peak vs. energy trend

- Orion is the distribution company covering Christchurch, NZ's third largest city
- It has been working on DSM since early 1990s

How did they do it?

Pricing:

Households - Day / Night tariff

DayNight (9PM-7AM)8.44c/kWh

Households - Controlled tariff

24 hour uncontrolled (one meter)
Economy 24 (one meter)
19.47 c/kWh
16.54 c/kWh

Commercial/industrial

Large capacity component (consumers try to minimise own peaks)

Load control:

- Aggressive use of ripple control (households on controlled tariffs)
- Also controlled industrial loads (300 customers using ¼ of the load)

Generation:

- DG Mainly local back-up generation
- Fuel Switching
 - Cogeneration, used for heating larger buildings
 - Gas instead of electric heating

Case 4 – Load management

Demand Side Participation and transmission network deferral – Transpower's Upper South Island trial

TRANSPOWER

Project purpose

- Transpower has to take non-transmission options into account whenever proposing upgrades to the grid.
- For that purpose Transpower is designing a Grid Support Contract product to:
 - identify (EOI/RFI);
 - evaluate (RFP); and
 - contract

with provides of non-transmission options (generation or demand side)

 The South Island Demand Side Participation Trial project was designed to gain some real experience of DSP (generation side fully known) and to try a "final draft" of the Grid Support Contract product in practice.

Setup

- Fear that the project could be needed soon in the Upper South Island.
- Designed and approved in a hurry, early 2007
- Two stages:
 - 2007 Winter Pilot
 - 2008 Winter Trial
- Little time available for preparing 2007 stage

2007 Winter Pilot - Results

- Contracted with 14.2 MW from 16 different sources
- Sources called 7-8 times during the winter 2007
- Reliability by Source:

	Generation	Industrial	Coolstore	Hydro	Total
MW contracted	3.5	7.0	3.3	0.4	14.2
Number of sources	5	5	4	2	16
Response	88%	72%	47%	41%	68%
Number of calls	34	38	32	16	120
Zero responses	1	3	6	4	14

 Low reliability due to strict "success" criteria and little time for preparation

2008 Winter Trial - Overview

- RFP responses came in March 2008
- Finalise commercial terms in April / May. Likely to contract with 30+ MW
- Will use the Grid Support Contract structure
- Trial period will be June through August
- Calls will be system capacity threshold driven

GSC's - some conclusions

- Can be used for:
 - Planned "economic" deferrals
 - Unplanned deferrals:
 - Demand forecasts wrong
 - Delays in transmission built
- Using it for planned deferrals risky
 - It can only use it once
- Upper South Island no longer at risk
 - Latest demand forecast changed perception of the need
- Need on the North Island this winter?
 - HVDC pole 1 partly out
 - 300 MW New Plymouth power station out
 - Dry largest North Island reservoir (Taupo) at minimum

Questions?