

EcoGrid EUA Real-Time Smart Grid Demonstration in Denmark

IEA DSM Agreement, Task XVII Arnhem, 25th April 2012

George Huitema EcoGrid Coordinator TNO TNO, The Netherlands

Content

- The Challenges of Tomorrow
- What is EcoGrid EU?
- The Real-time Market Approach
- End-user Involvement
- Conclusion

The Wind Power Challenge

An illustrative case from Denmark

Today (2008)

Wind power covers the entire demand for electricity in 200 hours (West DK)

Tomorrow (2025)

In the future wind power will exceed demand in more than 1,000 hours

Consequence: an increasing need for balancing services

EcoGrid EU in Brief

- Project:
 - EU FP7 Project
 - Total budget: 24 million Euro (EU funding 12 million Euro)
 - Demonstration > 50 % of budget
- Demonstration:
 - A large scale demonstration of a real-time market place for distributed energy resources
 - A demonstration of a real power system with more than 50 percent renewable energy
 - Participation of small consumers and local producers in the power market
- Preparation for a fast track towards European real-time market operation of RES & DR

EcoGrid EU Partners

BELGIUM ELIA EANDES ORES

GERMANY Siemens EnCT

SPAIN LaBein

ESTONIA Tallin University of Technology (TUT)

AUSTRIA Austrian Institute of Technology (AIT)

5

Bornholm – a Unique Test Site

Demonstration in a "real" system with 50 % RES

High variety of low carbon energy sources

Several active demand & stationary storage options

Interconnected with

the Nordic power Market

Operated by the local municipal owned DSO, Østkraft

Eligible RD&D infrastructure & full scale test laboratory

9

Key Numbers for Bornholm

Property	Value
Customers	
Number of customers	~28.000
Number of customers (> 100.000 kWh/year)	~300
Total energy consumed	268 GWh
Peak load	55 MW
Low-carbon energy resources	
Wind power plants	30 MW
CHP/biomass	16 MW
PV (roll-out under project)	1.0 MW
Biogas plant	2.0 MW
Electric vehicles (under roll-out)	
Grid	
60 kV grid	131 km
Number of 60/10 kV substations	16
10 kV grid	914 km
Number of 10/0.4 kV substations	1006
0.4 grid	1.887 km
Communication	
Fiber network between 60/10 kV substations	131 km
District heating	
Number of district heating systems	5
Total heat demand (in 2007)	560 GWh
Operation	
Normal operation mode	Interconnected Nordel
Island operation capability	Continuous

The Scope of a Real-time Market

An Additional Source of Regulation Capacity

The current system:

- TSOs obtain a certain quantity by selecting/accepting bids
- Include only large producers, large consumers and aggregated smaller units (minimum 10 MW)
- Loads are "updated" every 15 minutes

The new real-time market:

- No restriction on the size of units (MW)
- TSOs set a price every 5 minutes that result in a certain quantity of fast(er) response from smaller units

How does the Real-time Market Work?

- DER and flexible demand will respond to variable electricity prices through broadcasted price signals:
 - Step 1: Electricity price from the existing day-ahead Elspot market is sent to the end-user - soon after clearing (= forecast of "real-time" price)
 - Step 2: During the day the price signal is updated in realtime, i.e. every five minutes – to reflect the need for up or down regulation (if no imbalances the real-time price = the day-ahead Elspot price)
- The real-time price is set by a Real-Time Market Operator (RTMO) on the basis of the need for balancing resources
- The RTMO could be the TSO(s)

Day-ahead Market Price (Spot) and Real-time Price

Real-Time Market Process System Balancing

- Set price based on need for correcting system balance
- Publish price to users (price is the final settlement price)
- 3. Production and consumption can choose to react
- 4. Monitor response, back to 1
- Important: The published price is the final settlement price.

The EcoGrid EU Architecture

New power market architecture requirements:

- Installation of automatic "smart controllers" in DER devices
- Smart Meters to manage "real-time" price signals
- Modern ICT infrastructure to transmit price signal to market participants and operational units

End-user Involvement

- Easy for the consumer
 - The price is always known (each five minutes)
 - In principle possible to respond by manually turning off electric appliances, but...
- Appliances equipped with automatic end-user "smart controllers" will do most of the job!
- The requirement of end-user involvement:
 - Understandings of the potential benefits of participation (economical/energy savings/environment)
 - Accept/make contracts based on predefined "preferences"
- ETP Strategic Research Agenda 2035: Alliander/TNO Smart Retail & Consumer Technologies; See http://www.smartgrids.eu/

3 September 2010 EcoGrid EU 17

COOPERATIO

2000 Participating Customers in the Demonstration

Reference Group

400-500

Manual Control

Semi automatic Control

Automatic Control

Smart businesses

- 200 households with a smart meter
- No access to specific information or "smart" equipment
- 400-500 households with a smart meter
- Receiving market price information
- Must move their energy consumption by themselves

- 700 semi automated households with a smart meter
- 1-2 reactive appliances responding to price signals
- All houses have heat pumps or electric heating

- 500 fully automated households with a smart meter
- Multiple connected appliances all responsive to price signals
- 100 commercial/ public customers with a smart meter
- Including small business units and the public customers
- 4 connected smart appliances

COUPERATION

PowerMatcher (TNO/IBM)

DEMS (Siemens)

WP structure

Conclusion (1) New Solutions = New Challenges

- New settlement "challenges" in the real-time market:
 - Meters should handle 5-minutes interval readings
 - Large amount of data should be managed in the settlement process
- Replication challenges:
 - Many countries have deployed meters with 15 minutes/hourly reading
 - The real-time concept must be adapted to those conditions
- End-user acceptance
 - New intelligent home installations are required
 - The concept is based on automatic control (no manual actions required)
- "What's in it for me"?
 - How to make the system attractive for the small consumers/small RES units
 - Keep transaction costs on an acceptable level

Conclusion (2)

- The PowerMatcher (TNO contribution)
 - Efficient energy management for the smart grid
 - Field-proven technology
 - PowerMatcher: www.PowerMatcher.net

- EcoGrid.EU
 - Demonstrates the Smart Grid Future on Bornholm isle
 - Novel real-time market integrates smaller end-users
 - User centric-approach

