Some Issues and Challenges in Doing DSM in India

Daljit Singh Prayas Energy Group

Prayas Experience in DSM

- □ Independent NGO of professionals doing research based advocacy in public interest
- Involved in DSM since early 1990s and did an IRP for Maharashtra in 1994
- □ Report on need for regulatory action and utility driven DSM programs in 2005
- Review of Nashik Pilot CFL Program by MSEDCL
- Collaborative effort to promote DSM in Maharashtra between Lawrence Berkeley National Lab (LBNL), MERC, Maharashtra Utilities.

Overview

- Highlights of Review of Nashik pilot CFL program
 - What the pilot program was about
 - What we did in our review
 - What we found in our review
- Lessons for future DSM programs in India

Highlights of Review of Nashik Pilot CFL Project

Description of Program

- Only residential and commercial consumers having no arrears eligible
- Two choices (1) direct purchase or (2) installments
- ☐ Limit of 5 CFLs per consumer
- Several delivery mechanisms
 - At 'Bill Collection Centers'
 - Door to door sales by 'Bachat Gut' women
 - Retailers' shops
 - MSEDCL meetings to publicize CFL program
- Large promotion also by the suppliers

Overview of Prayas's Review Process

- Components of Review
 - Impact Evaluation
 - Failures and Replacement of CFLs
 - Tracking and Monitoring System
 - Price Comparison
 - Process Evaluation
- Process
 - Survey ~ 200 urban & 50 rural participants
 - In-depth interviews with participants, nonparticipants, MSEDCL staff, retailers, manufacturers, Bachat Gut women

Cost Effectiveness of Appropriately Used CFLs

Consumer Perspective	Urban	Rural
Energy Savings per CFL (kWh/month)	4.5	5.9
Applicable Tariff (Rs/kWh)	2.50	2.50
Consumer Savings (Rs./month)	11	15
Pay Back Period (months)	10-11	7-9

Utility Perspective	Urban	Rural
Energy Savings per CFL (kWh/month)	4.5	5.9
Energy Savings per CFL including 10% losses (kWh/month)	5.0	6.6
Applicable Tariff (Rs/kWh)	4.50	4.50
Utility Savings (Rs./month)	10	13

Variety of Uses of CFLs by Sample Consumers

	Replaced Tube	Replaced "Zero Watt" Bulb	Used in Bathroom		Replaced Incand. Bulb in Other Location
Urban	59%	4%	9%	4%	24%
Rural	52%	2%	2%	3%	41%

Percentage of Failed CFLs by Days of Usage

Six Month Failure Rates of CFLs Used by Survey Respondents

	Consumers Who Experienced At Least One Failure of CFLs	Failure Rate of Initial Set of CFLs Purchased	Failure Rate Including Replacements
Urban	69%	41%	35%
Rural	96%	74%	55%

Problems with Replacement of Failed CFLs

- 14% of urban consumers and 29% of rural consumers who tried to get replacements faced problems
- Replacement in rural areas particularly difficult
 - long distance and expenses (up to Rs. 50 per trip)
- Distributors did make significant efforts to replace failed CFLs but high failure rate compounded the problem

Lessons for Future DSM Programs

Utilities Can Play a Key Role

- Facilitate penetration of efficient technologies:
 - Increasing awareness
 - Reducing high cost through bulk purchases and installment schemes
- Enhance programs through innovative delivery mechanisms such as *Bachat Gut* women in Nashik

Consumers Keen to Participate

- Penetration of CFLs through Nashik program impressive
- Almost all purchases occurred in poor neigbhorhoods
 - Poor eager to participate provided program affordable through innovative financial schemes - installation plans
 - Poor adopt new technologies if aware of benefits

Evaluation, Monitoring & Validation (EM&V) extremely important

- EM&V important information for decision makers regarding actual savings
- Feedback to improve on-going and future programs
- Data requirements for evaluation should be incorporated into design of program
- Baseline data should be collected accurate estimation of program impacts
- EM&V should be done preferably by independent agency

Process Evaluation Crucial Component of EM&V in Indian Context

- Process evaluation assesses program design, procedures, systems to see if can be improved.
- Many utilities do not have effective MIS and process evaluation will identify areas for improvement
- Quality of equipment often issue in Indian context
- A good on-going process evaluation would have identified problems with quality of CFLs and replacement early in the Nashik pilot.

Capacity Building Would be Useful

- DSM new area in India; lack of understanding and expertise.
- Proper program design, on-going oversight and EM&V essential for success
- BEE should institute technical assistance and training programs including EM&V for utilities' and regulatory staff

Load Research Necessary for Large Scale DSM Programs

- Very little knowledge about components of peak demand.
- Load research helps answer questions such as:
 - How much do domestic consumers contribute to system peak?
 - How many incandescent bulbs are used by households and small commercial consumers
 - What is fastest growing end-use?
 - How much does commercial air-conditioning contribute to system peak?

Example of Load Research

Source: Presentation by Grayson Heffner, DSM Workshop, Mumbai, March 10-14, 2008

Summing Up

- Utilities can play an important role in increasing awareness and lowering high initial cost barrier
- Consumers are keen to participate. Communication and innovative financial schemes very helpful
- EM&V critical for success. On-going process evaluation particularly relevant in India to allow mid-course correction. Also addresses concerns about quality of equipment and information systems.
- Capacity building in program design and EM&V necessary. BEE could play role in training programs
- Load research required to effectively target DSM programs and estimate potential savings.

Thank you for your attention!