Quantifying the demand shift on the basis of statistical methods **first evaluation** from the project EcoGrid EU

Presentation at: Workshop on DSM Potentials, Implementations and Experiences Presentation by: Florian Judex

May 20th 2014

Can we prove that the EcoGrid^{eu} concept actually works?

Price Energy

 the price should influence energy consumption
in many cases automation should do this
the entity issuing price should know how a certain price will influence energy consumption to determine the right price at the right time

2a) ideally, this should be on a very finely grained level

short overview

1900 participants are recruited as of March 2014

Currently: step one works for the automated customers

- price signals are fed to the customers
 - realistic
 - extreme
 - flat

Methods

- Analysis of Variance (ANOVA)
- Question: is mean value of two samples really different or just an effect of the random sampling
- prerequisites: normal distribution
- answer: yes or no with probability

- two sided Kolomogorov-Smirnoff test
- Question: are two empiric cumulative probability density functions different
- perquisites: none
- answer: yes or no with probability
- why not always: higher rate of false negatives

Manual Control of the Energy Use

- Customer has an online Feed Back System informing them about the price and price forecast
- Customers for evaluation were chosen based on their ability in the feedback system
- price signal up until now came in three phases

Phase One - outcome

Realistic Price Signal from the market

consumption lower at lower prices and higher at higher prices

why?

Phase One – possible reason

Consuption over time of day averaged

Phase 2 – outcomes

- only four distinct price levels
- ANOVA possible
- positive outcome
- again the consumption is actually lower at times lower prices

Phase 2 – possible reason

Consuption over time of day averaged

Price with respect to time of day

Phase 3 – outcomes

qualitative identical behaviour to the other two phases

Siemens Control - temperature

- Siemens Control directly influences the indoor temperature setpoints, depending on the price, using a control signal
 - does this work?
- Evaluation by compering indoor temperatures at different controls signals
 - Method: Analysis of Variance
- Sample on the right side

Results – IBM direct control

- IBM control influences the heating unit directly
 - tries to find the optimal period for turning it off
 - depending on the state of the dwelling and the heating unit, this may or may not happen
 - does it work?
- Evaluation: correlate the control signal with the energy consumption
 - Method: Kolmogorov– Smirnov test

And now the numbers

- SIEMENS
- Power depending on signal

- IBM direct control
- average consumption with respect to the load shifting event

	power in kW				power in kW		
Statistic	high	normal	low	Statistic	before	during	after
Mean	4,82	2,55	1,60	Mean	2,22	1,29	2,16
Variance	1,506	1.591	0.770	Variance	1,41	1,07	1,95

Outlook: Industrial Customers

- Still being recruited
 - manure mixers
 - fork lifter loading stations
 - cold storage unit
- higher power, clearer constraints

sludge turner, source: project GAVE

slurry pump, source: project GAVE

finally: never forget, it is a field study

source: project C2G

Thank you for your attention

Florian Judex Scientist Sustainable Buildings and Cities

Mobile : +43 664 2351913 florian.judex@ait.ac.at

AIT – Austrian Institute of Technology Energy Department Giefinggasse 2 1200 Vienna Austria

