

Load flexibility in small and medium enterprises and criteria for successfully enabling them

Demand Flexibility – Dream or Reality IEA Task 17, 29.06.2015

Tara Esterl

AIT Austrian Institute of Technology

- 1. Project Hybrid-VPP4DSO
- 2. Demand response analysis for Styria
- 3. Qualitative assessment of business models for hybrid VPPs
- 4. Next steps

- 1. Project Hybrid-VPP4DSO
- 2. Demand response analysis for Styria
- 3. Qualitative assessment of business models for hybrid VPPs
- 4. Next steps

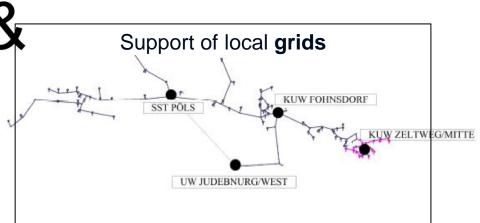
Project Hybrid-VPP4DSO

Details of the project:

- Spring 2014 Autumn 2016
- 9 project partners
- Further Information: http://www.hybridvpp4dso.eu/

Tasks of the project

- Identifikation of DR potential in Styria and Slovenia
- Identifikation of critical grids
- Identification of both market and grid business cases and development of use cases for hybrid VPPs
- Simulation of the hybrid-VPP operation in the distribution grid
- Proof-of-Concept in laboratory
- Evaluation of hybrid approach


Hybrid-VPP4DSO approach

Virtual Power Plants (VPPs)...

- Aggregation of small, decentralised units of both production and consumption
- Seperate consideration of commercial and technical VPP

Possible applications for VPPs

...between market, hybrid and grid.

Market	Hybr	r <mark>id</mark>	Grid
	passive	active	

Market-VPP

The grid is robust enough to permit the operation of VPPs in the Electricity Market while not being jeopardised by it.

Hybrid-VPP

(passive)
The degree of participation of the VPPs in the Electricity Markets is agreed with the DSO beforehand. This agreement guarantees that the grid limits are not

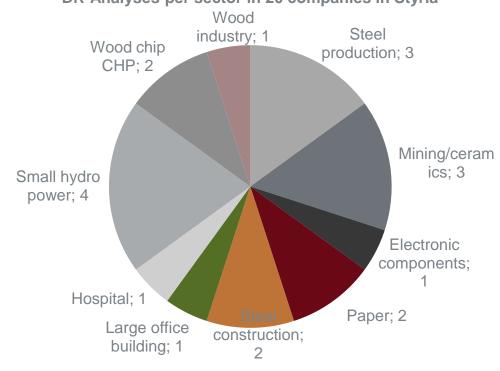
violated.

Hybrid-VPP (active)

The VPPs
participate in the
Electricity Markets
as long as the grid
limits are not
violated. If a critical
situation is identified
during the VPPs
operation, an
algorithm takes care
of it by limiting the
participation of the
VPP.

Grid-VPP

The VPPs do not participate in any Electricity Market, but only provide active local services to the DSO.


- 1. Project Hybrid-VPP4DSO
- 2. Demand response analysis for Styria
- 3. Qualitative assessment of business models for hybrid VPPs
- 4. Next steps

DR analysis in Styria

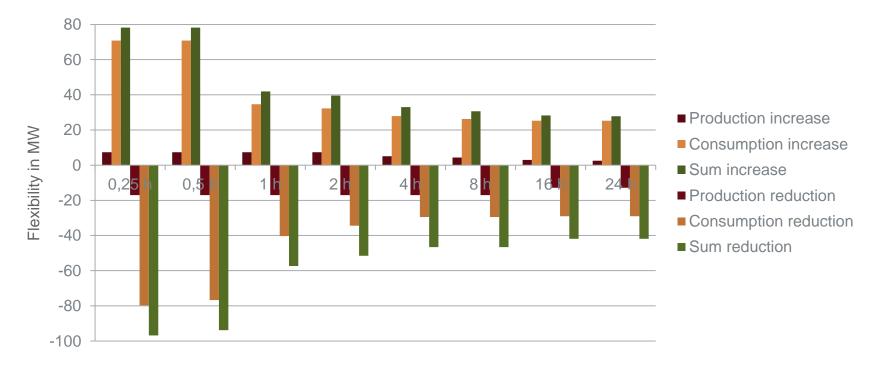
Companies of DR analysis in Styria

DR-Analyses per sector in 20 companies in Styria

DR analysis

- 57% of the companies agreed to take part in the interviews
- In Slovenia much less response
- Higher DR potential in companies/ for processes, when
 - Storable semi-finished goods and storage space available
 - Load factor of less than 100%
 - High automation
 - Low involvement of **personnel** in the processes

DR analysis per sector


Sector	Potential	Specifics	Shifting times [h]
Steel production	High	Reduction with electric arc furnace for raw materials but the higher the requirement for the good the less the chance for load shifts; nearly no chance for load shifts in thermal treatment processes	0.25 - 24
Mining/ ceramics	High	Mainly depending on level of automation, storage capacity and actual degree of their capacity utilization	0.5 - 8
Paper	Small/ medium	Mainly depending on storage capacity before/after shredders, grinding machines, mills etc.	0.5 - 24
Large office building	Small	From ventilation, air conditioning, etc.	0.25 - 1
Hospital	Small	Emergency generators cannot be used in general (disaster protection); but small potential from ventilation, air conditioning, steam humidifiers, etc.	0.25 - 2
Small hydro power	Medium	Depending on capacity level: April to June 100%; consideration of feed-in regulation	up to 24
Wood chip CHP	Medium	Reduction possible if bypass for heat production is foreseen; consideration of feed-in regulation	up to 12

Flexibility potential of these companies in Styria

- Typical **shifting** times between
 - 5 min to 30 min for process loads
 - 5 min to 1 h for non-process loads (increase) and 5 min to 30 min for reduction

- Size of technical units between
 - 150 kW to 8 MW for process loads
 - 140 kW to 5 MW for non-process loads as boilers, etc.

Company view: Concerns and Chances

Concerns

- Economic disadvantage for the company +
- Increase of technical problems with production line
- Reduction of comfort parameters for employees
- Reduction of the quality of the products +
- Technical capability of the existing system
- Disadvantage with feed-in regulation for renewable energies
- Conformity with disaster protection plan
- Data security

Chances

- Economic profit for the company
- + Less outsourcing due to the chance of economic production during weekend
- Increasing the green image
- Chance for economic attractive operation mode of renewable electricity production after end of the feed-in tariff
- Consideration of the actions within the new energy efficiency law

Company view: Implementation of DR

What would be a **knock-out criteria** for a participation in a DR-project?

- In most cases an economic disadvantage for the company
- risk of a lower quality of the produced goods
- higher maintenance costs
- data security

Which additional effort would be necessary in the company to implement a DR-system?

- Mostly already existing production planning system can be adapted
- consideration of technical capability of the existing systems, sometimes technical adaptations will be necessary
 - separate cabling of consumers
 - integration in process control
 - main parallel mode of generator, etc.

- 1. Project Hybrid-VPP4DSO
- 2. Demand response analysis for Styria
- 3. Qualitative assessment of business models for hybrid VPPs
- 4. Next steps

Business Cases for active Hybrid-VPPs

Market - Business Cases

- 1. Spot/Intraday
- 2. Tertiary reserve (mFRR)
- 3. Depending on pool: secondary reserve (aFRR)
- 4. Minimising imbalance costs of balance responsible party
- 5. Potential future markets

Grid - Business Cases

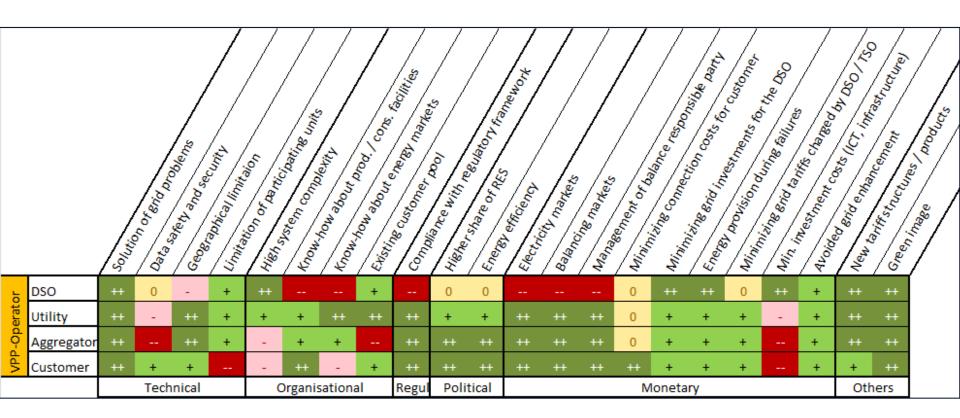
Perspective of Customer

Minimising grid connection costs

Perspective of distribution grid operator

- 2. Minimizing investment costs in grids
- 3. Upkeep of supply in cases of system incedents
- 4. Minimizing grid tariffs charged by DSO / TSO

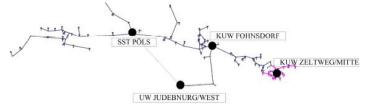
=> Combination of business cases to use cases.


Business models for active Hybrid-VPPs

Business models from perspective of potential VPP-operators

- 1. Distribution grid operators
- 2. Energy utilities
- 3. Aggregators
- 4. Big consumers with own production capacity

Qualitative assessment of the business models


- 1. Project Hybrid-VPP4DSO
- 2. Demand response analysis for Styria
- 3. Qualitative assessment of business models for hybrid VPPs
- 4. Next steps

Outlook

Next steps

- Solutions proposals for unbundling issue
- Simulation model for test grids in Slovenia and Styria
- Definition and simulation of use cases
- Combination of grid and market model

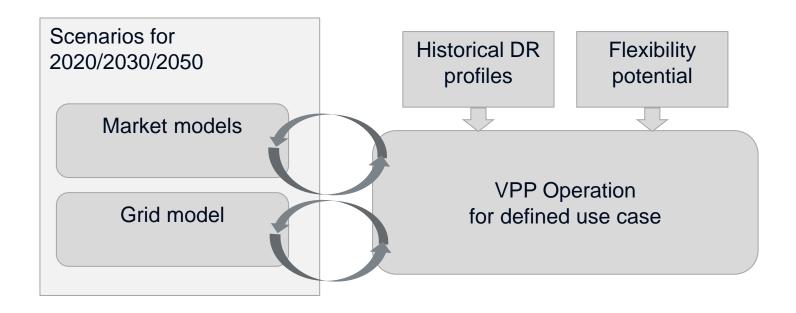
Evaluation of the use cases for different scenarios

Load flexibility in small and medium enterprises and criteria for successfully enabling them

e!Missi0n Project Hybrid-VPP4DSO

TARA ESTERL

Junior Scientist, Electric Energy Systems, Energy Department


AIT Austrian Institute of Technology GmbH

Giefinggasse 2 | 1210 Vienna | Austria

M +43 664 8157810 | tara.esterl@ait.ac.at | http://www.ait.ac.at

Evaluation of the use cases for different scenarios

