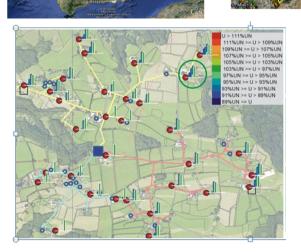


New Task Big Data for Energy Efficiency

Energy Metering based Data Analytics for Energy Efficiency Matthias Stifter, AIT

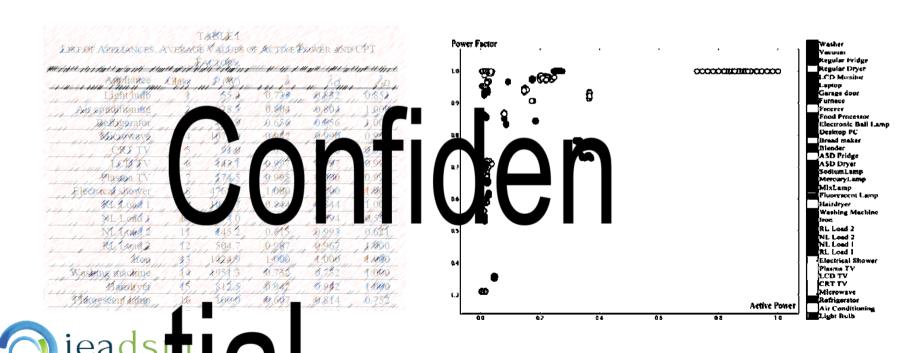
Big Data for Energy Efficiency

• Use of data analytic methods and approaches to identify energy efficiency potentials in consumption and other areas of energy usage.

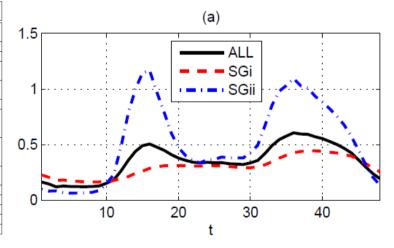


Power Systems

 Power System Network data from sensors and meters (e.g. smart meters) to identify losses and other inefficient network conditions.


High losses ("non-technical")

Renewables impact



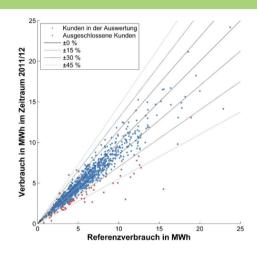
- Consumer devices
 - Consumption of electronic devices: use meter data and data discovery to identify the energy consumption of gadgets.

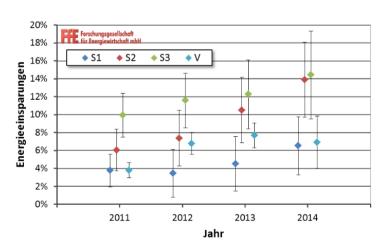
- Consumer behavior and segmentation
 - Identification of energy intensive user behavior (segmentation, etc.), using demographic data for more detailed information.

Socio-demographic variables	Description	Number of categories	Example(s)
GSP group	Grid Supply Point Group in UK, which are	Total 14	Southern; South Wales;
GSP group			North Scotland
	regional electricity distribution networks	3 in dataset*	
Age	Age of head of household	6	Age 26-35
Decision Maker Type	Type of person deciding household matters	13	Young Couple
Family Lifestage	The combined stage of life and family	14	Young family with children
	status including children		
Household Composition	People living together and their	13	Male homesharers
•	relationships to one another		
Household Income Band	Total household income per year	10	£30,000 to £39,999
Mains gas flag	Whether a household is connected to the	2	connected to gas;
	Main gas network; if Yes, it's assumed		not connected to gas
	that the household uses gas		
Mosaic Public Sector Group	Classification on citizen's location,	15	Young, well-educated city dwellers;
-	demographics, lifestyles and behaviors		Wealthy people living in the most
			sought after neighborhoods
Mosaic Public Sector Type	Subcategories of Mosaic Public	69	Young professional families settling
	Sector Group		in better quality older terraces
Number of Bedrooms	Number of Bedrooms of the property	5	5 + bedrooms
Property Age	When the property was built	6	1871-1919
Property Type 2011	Type of property in 2011	5	Purpose built flats; Farm
Property Value Fine	Estimated property value	25	£500,001 to £600,000
Tenure 2011	Property ownership in 2011	3	Privately rented

Use Case: Enduring long term energy saving potential by smart meter

- Smart meter roll-out does NOT automatically result in energy savings
- Long term energy saving potential is only possible by accompanying energy consulting in households
 - Demand visualisation (second resolution)
 - Webplatform
 - Monthly bill
 - Monthly energy report
 - Individual personal energy consultancy

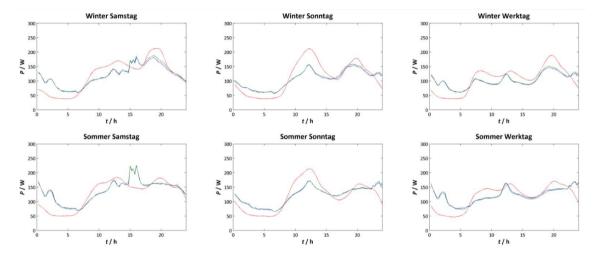

Jahr		S2	S 3
Darstellung des sekundengenauen Verbrauchs für den Kunden	х	х	х
Webplattform zur Überwachung des Verbrauchs	Х	Х	Х
Monatliche Stromrechnung	х	Х	х
Monatlicher Energiebericht		х	х
Individuelle persönliche Energieberatung			х



Use Case: Enduring long term energy saving potential by smart meter

Evaluation method (exclude extremes)

- Increasing savings with S2+S3
 → sustainable effect of energy consulting
- Non improving savings with S1
 - → No effect without energy consulting



Use Case: Improve forecast by utilizing smart meter data

Improve deviations from forecast by improving the standard load

profile

Jahr	S1	S2	S3	V
2011/12	3,8 %	6,0 %	9,9 %	3,8 %
2012/13	3,4 %	7,4 %	11,6 %	6,8 %
2013/14	4,5 %	10,5 %	12,2 %	7,7 %
2014/15	6,5 %	13,9 %	14,4 %	6,9 %

- Energy Efficiency in Industry Industry 4.0
 - Predictive Maintenance and Quality
 - Field Asset Monitoring

The Value of PMQ

- Lowering Unit/Item Cost (Improving profit/margin)
- 2. Increasing Production "Yield" (Productivity)
- 3. Superior ROA and "Asset Optimization"
- 4. Higher Revenue due to Quality Improvement
- 5. Increased Competitiveness due to higher Quality
- 6. New Services for Health Monitoring of Assets
- 7. Lower Risks due to fewer or elimination of Asset Failures

© 2015 IBM Corporation

Contact

AIT Austrian Institute of Technology

Matthias Stifter

Energy Department Electric Energy Systems

Giefinggasse 2
1210 Vienna
Austria
T +43(0) 50550-6673
M +43(0) 664 81 57 944
F +43(0) 50550-6613
matthias.stifter@ait.ac.at http://www.ait.ac.at

