Statistics	Model complexity	Test case building	Measurements	Models	Selection	Result

Data-driven models for demand-side management

Peder Bacher IEA Symposium on Demand Flexibility and RES Integration

May 9, 2016

- How can we gain as much as possible useful information from data?
- Statistical inference: the process of drawing conclusions from data that is subject to random variation
- Time-series models for describing a dynamical system

- Einstein: "Everything should be made as simple as possible, but not simpler"
- Fundamental question: "Which model and how complex should it be for *optimally* for providing the answers?"

- Einstein: "Everything should be made as simple as possible, but not simpler"
- Fundamental question: "Which model and how complex should it be for *optimally* for providing the answers?"
- Answer: it depends on the data!
 - 'simple data' \Rightarrow 'simple model'
 - 'complex data' ⇒ 'complex model'
- It is a matter of what we need to know or simply economical investment. Which sensors are needed for providing the needed information?
- or the other way around what can be achieved with current resources

From statistical theory a wide range of techniques are available:

- Find the most suitable model to describe the data
- Estimate the uncertainty
- Validate the model fit (likelihood)

- Static models, no dynamics (e.g. for daily values)
- ARMAX, discrete models based on transfer functions, *black-box dynamics*, *however for control and steady-state parameters (e.g. UA-value, gA-value) fully applicable*
- Grey-box models. *Continuous (or discrete) time models, combination of physics and statistics*

- Static models, no dynamics (e.g. for daily values)
- ARMAX, discrete models based on transfer functions, *black-box dynamics*, *however for control and steady-state parameters (e.g. UA-value, gA-value) fully applicable*
- Grey-box models. *Continuous (or discrete) time models, combination of physics and statistics*

Static models (linear function):

Measurements = Function(Inputs) + Residual

- Static models, no dynamics (e.g. for daily values)
- ARMAX, discrete models based on transfer functions, *black-box dynamics*, *however for control and steady-state parameters (e.g. UA-value, gA-value) fully applicable*
- Grey-box models. *Continuous (or discrete) time models, combination of physics and statistics*

ARMAX model:

 $Measurements = Transferfun_1(Inputs) + Transferfun_2(Error)$

- Static models, no dynamics (e.g. for daily values)
- ARMAX, discrete models based on transfer functions, *black-box dynamics*, *however for control and steady-state parameters (e.g. UA-value, gA-value) fully applicable*
- Grey-box models. *Continuous (or discrete) time models, combination of physics and statistics*

Grey-box model:

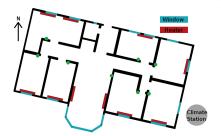
 $States = Fun_1(States, Inputs) + Fun_2(SystemError)$ $Measurements = Fun_3(States, Inputs) + Fun_4(MeasurementError)$

- Static models, no dynamics (e.g. for daily values)
- ARMAX, discrete models based on transfer functions, *black-box dynamics*, *however for control and steady-state parameters (e.g. UA-value, gA-value) fully applicable*
- Grey-box models. *Continuous (or discrete) time models, combination of physics and statistics*

Grey-box model:

 $States = Fun_1(States, Inputs) + Fun_2(SystemError)$ $Measurements = Fun_3(States, Inputs) + Fun_4(MeasurementError)$

Note that part of the model is a description of the error(s)


- In Annex 58 we developed guidelines (focus on *energy performance assessment*)
- 'Physical guidelines': setup of measuring campaign and experiments
- 'Statistical guidelines': models for data from buildings (unoccupied, e.g. from a test sequence run 3-7 days):
 - Static, ARX and grey-box models
 - Model selection procedure
 - Examples and implementations i R

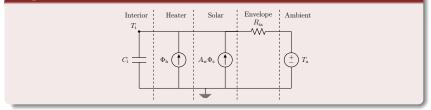
Result

Test case: One floored 120 \mbox{m}^2 building

Objective

Find the best model describing the heat dynamics of this building

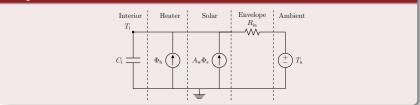
Result

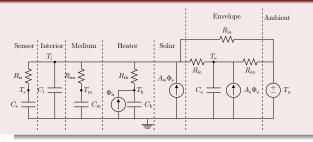

Data

y (°C) 14 18 9 20 40 80 100 120 140 60 Measurements of: T_a (°C) 2_3 y_t Indoor air temperature 0 20 40 60 80 100 120 140 ò T_a Ambient temperature ², (kV) $\Phi_{\rm h}$ Heat input $\Phi_{\rm s}$ Global 40 60 80 100 120 140 20 irradiance φ_s(kW/m²) 0.10 0.20 0.00 20 ò 60 80 100 120 140 Time (h)

IDENTIFY THE BEST PHYSICAL MODEL FOR THE DATA

Simplest model

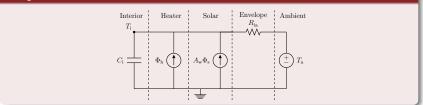


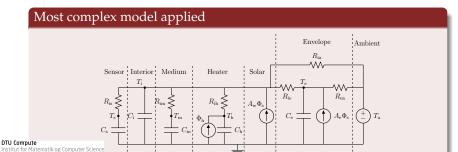


IDENTIFY THE BEST PHYSICAL MODEL FOR THE DATA

Simplest model

Most complex model applied

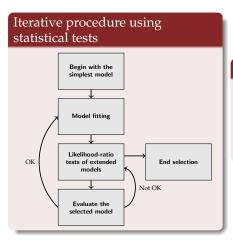




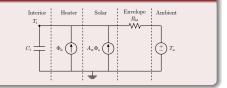
IDENTIFY THE BEST PHYSICAL MODEL FOR THE DATA

Simplest model

The best model for the given data is probably in between


/leasurements

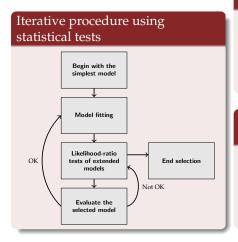
Models


Selection

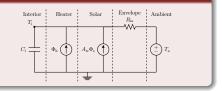
Result

SELECTION PROCEDURE

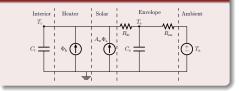
Simplest model



Mod

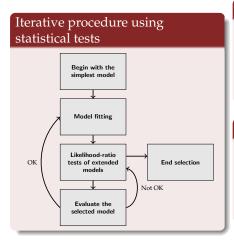

Selection

Result

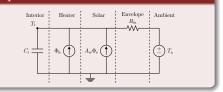

SELECTION PROCEDURE

Simplest model

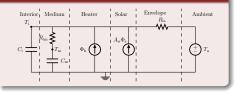
First extension: building envelope part



ts M

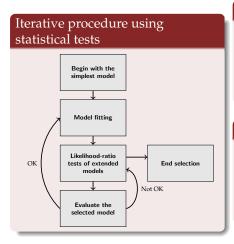

ls Selection

Result

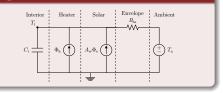

SELECTION PROCEDURE

Simplest model

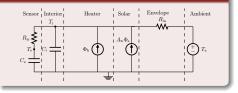
First extension: indoor medium part



s M

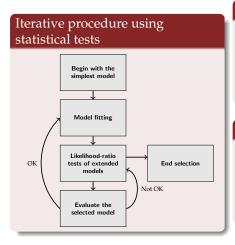

s Selection

Result

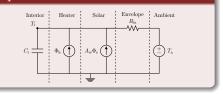

SELECTION PROCEDURE

Simplest model

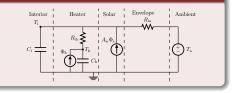
First extension: sensor part



s Mo

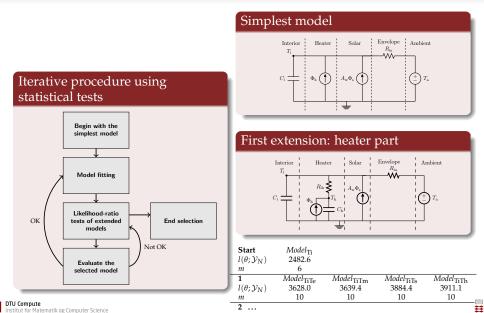

Selection

Result


SELECTION PROCEDURE

Simplest model

First extension: heater part

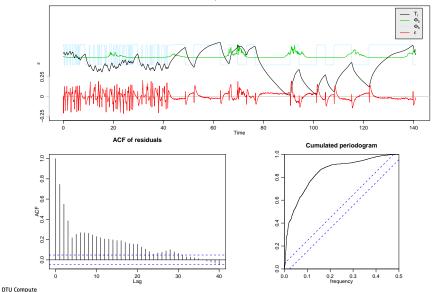


s M

s Selection

Result

SELECTION PROCEDURE


Mo

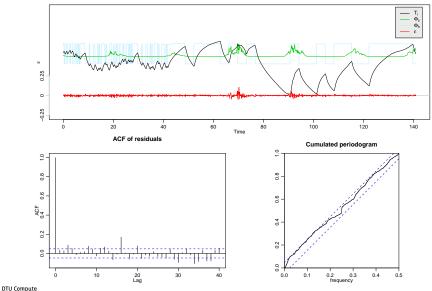
Selection

Result

EVALUATE THE SIMPLEST MODEL

Inputs and residuals

Institut for Matematik og Computer Science


Mod

Selection

Result

EVALUATE THE SELECTED MODEL

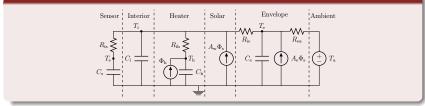
Inputs and residuals

Institut for Matematik og Computer Science

DTU

Statistics	Model complexity	Test case building	Measurements	Models	Selection	Result
_						_
Sel	ected model					
	Sensor R_{is} R_{is} C_{s} C_{s}		A _w Φ _s	Ambient R_{ea} $A_e \Phi_s$ $+$ T_a		

Test case building


Measurement

ts M

Models Selection

Result

Selected model

Estimated parameters

Ĉi	0.0928	(kWh/C)
Ĉe	3.32	-
\hat{C}_{h}	0.889	-
\hat{C}_{s}	0.0549	-
Âie	0.897	$(^{\circ}C/kW)$
Rea	4.38	
Â _{ih}	0.146	-
Â _{is}	1.89	-
\hat{A}_{W}	5.75	(m^2)
Âe	3.87	-

Estimated time constants					
$\hat{ au}_1$	0.0102	hours			
$\hat{\tau}_2$	0.105	-			
$\hat{ au}_3$	0.788	-			
$\hat{ au}_4$	19.3	-			

DTU Compute

- Need to excite the dynamics of the system!
- Hence you need data with variation in the inputs:
 - Turn on/off the heaters
 - Low ambient temperature preferable
 - You need direct solar radiation
- Data from buildings with thermostatic control wont work (flexibility can be with hot water tank)

- We have a model to predict the indoor temperature:
 - Input: heating and climate
 - Output: indoor temperature
- Model Predictive Control (MPC):
 - Setup a cost function (e.g. monetary and indoor climate)
 - Constrains (max heating etc.)
 - Use weather forecasts and calculate an optimized heat input

More time series modelling techniques

- Model selection (likelihood-ratio test, AIC, BIC)
- Parametric, semi-parametric and non-parametric models:
 - splines, kernels, regression trees, neural-networks, ...

More time series modelling techniques

- Model selection (likelihood-ratio test, AIC, BIC)
- Parametric, semi-parametric and non-parametric models:
 - splines, kernels, regression trees, neural-networks, ...
- Kalman filtering (grey-box models)
- Hidden Markov models (regime models)
- Robust estimation and outlier detection
- Time adaptive models

We are setting up a new Annex: focus models for occupied buildings(contact Staf Roels, KU Leuven)

- Annex 58 Statistical Guidelines
- Summer school on these matters (time-series modelling for buildings), 19. to 24. June, Grenada, Spain
- DTU Compute, Dynamical Systems
 - Solar and wind forecasting, load forecasting, data-driven models for: buildings, user behaviour, EVs, district heating, grids
 - MPC and optimization
- CITIES project
- Send me a mail pbac@dtu.dk

Statistics	Model complexity	Test case building	Measurements	Models	Selection	Result
Tha	anks for your tin	ne!				

