KU LEUVEN

ENERGY FLEXIBILITY BY STRUCTURAL THERMAL STORAGE IN DWELLINGS IEA EBC ANNEX 67

dr. ir. **Glenn Reynders**KU Leuven, Building Physics Section
Glenn.Reynders @bwk.kuleuven.be

Energy Flexible Buildings

ANNEX 67

Energy in Buildings and Communities Programme

Energy Flexible Buildings

ANNEX 67

Energy in Buildings and Communities Programme

Goal

"Define and quantify energy flexibility in buildings"

Activities

- Subtask A: Definitions and Context
- Subtask B: Analysis, Development and Testing
- Subtask C: Demonstration and User Perspectives

3rd Work meeting: Bolzano, Italy. October 17-19, 2016 Contact O.A.: Søren Østergaard Jensen <sdj@teknologisk.dk>

- What impact do buildings have on district energy system?
- What can buildings offer as flexibility to the grid?

- Size (kWh)
- Power (kW)
- Availability (s)
- Investement cost (€ + kWh)
- Current state (-)

- Comfort
- Cost / Profit (€)
- Energy use (€ + kWh)

Flexibility indicators

- Available capacity
- Storage Efficiency

- State of Charge
- Power shifting capability

Generic Flexibility Characteristics

 C_{ADR} : Available storage capacity [kWh]

 η_{ADR} : Storage efficiency [%]

Interpretation: ADR signature

Interesting for: planning, design

Activation of structural thermal mass – The concept

"How do building design parameters of new and existing buildings influence the potential for active demand response using structural thermal storage?"

I. REDUCED-ORDER BUILDING STOCK MODEL

II. ADR CHARACTERISTICS

Age class \bigcirc 1+2 \triangle 3×4

III. INTEGRATED OPERATIONAL MODEL

GRID IMPACT

Main conclusions

- Generic definition & dynamic quantification method
 - general comparison between buildings (and other storage technologies)
- Available capacity & storage efficiency
 - interpretable as building signature
 - o mainly influenced by:
 - heat emission system
 - heat loss coefficient
 - heat loss coefficient / thermal mass
- Characteristics are coupled and <u>not constant!</u>
- Case study showed buildings have significant potential as short-term storage
 - 8-16 kWh (thermal) in 2h
 - 73-96 % efficiency

Thank you!

dr. ir. Glenn Reynders Glenn.Reynders@bwk.kuleuven.be

